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A B S T R A C T

A principal delegates a decision to a biased expert. Before taking the decision, the expert
may undertake incremental learning about the unknown binary state from two alternative
information sources. There are no transfers but the principal retains the right to terminate
the expert’s learning to take the decision herself. The right to terminate learning benefits the
principal when the preferences of the principal and the expert are sufficiently misaligned but
may be detrimental when the preferences are sufficiently closely aligned.

. Introduction

Good decision making requires good information, but it can often be the case that learning through information acquisition is
naccessible to the decision maker. Instead, learning may require engaging an expert who has access to some learning technology.
he expert may be better equipped for undertaking learning due to specialist knowledge or know-how that he has accumulated
ver many years or because the expert has the exclusive access to key information sources. If the expert and the decision maker’s
ncentives are perfectly aligned, then the latter can hire the former to learn about the state and also to make a decision if and
hen the expert finds fit. However, if the interests of the decision maker and the expert are not perfectly aligned, it is tempting

o assume that the decision maker would always benefit from retaining at least some decision-making authority, particularly if the
xpert cannot misreport learning outcomes. In this paper, we show that this intuition is not entirely correct. When the decision
aker cannot provide monetary rewards for learning, limiting the expert’s decision-making authority may influence how the expert

earns to the detriment of the decision maker.
This paper studies a dynamic model of learning by an expert (he) on behalf of a principal (she). The model builds on the

equential decision problem of Che and Mierendorff (2019) with two information sources generating signals about two mutually
xclusive states of the world. We embed the special case of this decision problem into a game between the principal and the expert.

The players are interested in learning the prevailing binary state of the world as it determines the optimal binary decision.
onditional on the state, both the principal and the expert agree on the optimal decision, but in either state, the expert obtains a
igher payoff than the principal from one of the decisions; that is, the expert is biased towards a particular decision.

The principal delegates learning and decision making to the expert. The principal cannot undertake learning herself as only the
xpert has access to two alternative information sources. Each information source generates a conclusive signal about one of the
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states of the world according to a Poisson process. The expert can utilise either information source for free1 and must decide how
o divide attention between the two sources. The principal observes the learning outcomes and also observes but cannot directly

affect how the expert splits his attention between the information sources.
The principal and the expert discount future at a common rate. Hence, while learning is costless, it entails a costly delay to the

ecision. We assume that the discount rate is not too high, so that the expert, when sufficiently uncertain about the state, finds some
earning optimal. At the same time, the discount rate is not too low, so that, left to his own devices, when uncertain, the expert
ould optimally allocate all attention to the information source that can conclusively reveal the currently less likely state — that

s, while learning, the expert seeks a refutation of his current belief. In other words, we restrict attention to the parameter values
or which, in Che and Mierendorff (2019) terminology, ‘‘own-biased learning’’ heuristics is optimal.

The principal can choose between two simple contracting arrangements: complete delegation and flexible delegation. Under
complete delegation, she commits to surrender completely the authority to make decisions; under flexible delegation, she retains
the right to interrupt the expert’s learning and make the decision herself whenever she pleases.2

We consider only two simple contracting arrangements because they naturally arise in real world settings. For example, in
representative democracy, the government consists of experts who have time and resources to undertake due diligence on complex
ecisions on behalf of the electorate. While elected politicians are meant to represent the electorate, they may have their own vested
nterest in some decisions. Consequently, the interests of the government and electorate may not always be perfectly aligned. The
lectorate has very little (if any) power to fine-tune the set of actions available to the government or to dictate how to undertake
ue diligence on a particular matter. In fact, for most matters, the electorate is committed not to interfere in the government’s
earning and decision making until the next elections. Nevertheless, typically there are also statuary provisions for referenda — in
any jurisdictions, a referendum on certain particularly important matters can be called if there is sufficient support for it among

he electorate. A referendum takes the decision making out of the government’s hands entirely and allows the electorate to act
nstead. Our model asks whether such provisions to deprive the expert from the decision-making authority are always beneficial for
he principal.

Our main result shows that when preferences of the principal and the expert are sufficiently closely aligned, for a range of prior
eliefs, the principal prefers complete delegation, thereby completely surrendering the authority to make the final decision, over
lexible delegation, under which she retains the right to intervene. This, seemingly counter-intuitive, result is a consequence of the
xpert’s strategic response when he expects the principal to intervene and terminate learning prematurely.

Under complete delegation the expert learns and acts according to his preferences. However, since preferences of the principal
and the expert are misaligned, at some beliefs they disagree on the optimal learning policy. Inter alia, the misalignment of preferences
means that sometimes the expert finds it optimal to continue learning, while the principal prefers to take the decision immediately;
nd sometimes he may prefer learning from an information source that is sub-optimal from the principal’s perspective.

The main benefit of flexible delegation is that it prevents the expert from prolonged learning, thus avoiding costly delay when the
rincipal is already sufficiently confident of the right decision. However, flexible delegation cannot ensure that the expert undertakes
earning from the information source preferred by the principal. In fact, the threat of early termination of learning under flexible

delegation may make the expert’s choice of information sources even more sub-optimal for the principal than it is under complete
delegation. This adverse effect on the choice of the information source constitutes the cost of flexible delegation.

When the preferences of the principal and the expert are sufficiently closely aligned, the principal has to weigh the benefit of
lexible delegation against its cost and at times may well find it optimal to completely surrender the decision-making authority
o the expert. In contrast, when the preferences are sufficiently misaligned, the threat of premature learning termination does not
hange the expert’s choice of information sources and so, flexible delegation has only upside and no downside for the principal.

Our paper is related to various strands of the literature on delegation and dynamic learning in environments without transfers.
The literature on optimal dynamic learning, pioneered by Wald (1947) has been rapidly growing in recent years (see, for

xample, Zhong, 2022, Ke et al., 2016; Ke and Villas-Boas, 2019). While our paper builds on Che and Mierendorff (2019), other
closely related papers are Chaimanowong et al. (2023), Mayskaya (2024) and Nikandrova and Pancs (2018). In contrast to our
aper, other papers in this genre study decision problems.

A central theme within the literature on delegation of learning is that of observability. Much of the literature focuses on
unobservable learning by a biased agent who discloses his findings to the principal. In this context, the agent may be subject to a
moral hazard (as in Guo, 2016 and Garfagnini, 2011) or may not have incentives to disclose his findings truthfully (as in Argenziano
et al., 2016, Deimen and Szalay, 2019, Escobar and Zhang, 2021, Herresthal, 2022). In our model, the expert’s learning effort and
outcomes are observable, but the principal has very limited tools for inducing the biased expert to pursue the learning policy the
principal desires.

The rest of the paper is organised as follows. Section 2 describes the setup. Section 3 characterises the expert’s optimal learning
policy under complete delegation and discusses the implications of this policy for the principal. Section 4 discusses the main result
of the paper. Section 5 concludes by discussing some of the model assumptions.

1 It is convenient to assume that the expert can access information sources for free because it circumvents the problem of allocating the learning costs
between the principal and the expert. In Section 5, we briefly discuss the implications of adding a flow cost of learning.

2 The paper compares the payoff that the principal derives from these two mechanisms for any prior. Therefore, we are not explicit whether the principal
nows her prior at the time of choosing the contracting arrangement. We briefly discuss this further in Section 5.
2 
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2. Model

There are two players, a principal (she) and an expert (he). Time is continuous and indexed by 𝑡 ≥ 0. The time horizon is infinite.
oth players discount future exponentially at rate 𝑟 > 0.

Problem. The players are interested in taking the decision that is optimal for the unknown state of the world. There are two states
f the world, 𝜔 ∈ {𝐴, 𝐵} and two decisions 𝑥 ∈ {𝑎, 𝑏}.
Delegation. The expert, but not the principal, has access to an information technology that enables learning about 𝜔. The expert
can access this technology at no cost. At any time 𝑡 > 0, the principal delegates learning as well as decision making to the expert
hereby giving the expert authority to learn about 𝜔 and to take final decision 𝑥 ∈ {𝑎, 𝑏}. The principal observes but cannot directly
ffect, either through contingent payments or coercion, learning and the final decision taken by the expert.

We distinguish two types of delegation: complete delegation and flexible delegation. Under complete delegation, the principal
surrenders completely the authority to make decisions to the expert. Under flexible delegation, at each time, 𝑡, while the expert
has not taken action 𝑥 yet, the principal retains the right to override the expert and take decision 𝑦 ∈ {𝑎, 𝑏} herself.

Learning. At each time 𝑡, when he is given the authority to learn, the expert may allocate a unit of learning intensity between
two information sources, 𝐴 and 𝐵. Information source 𝐴 reveals conclusively state 𝐴; that is, when the expert learns from 𝐴 with
ntensity 𝛼 ∈ [0, 1], source 𝐴 generates a signal with a Poisson arrival rate 𝛼 if 𝜔 = 𝐴 and no signal if 𝜔 = 𝐵. Symmetrically,
nformation source 𝐵 reveals conclusively state 𝐵; that is, when the expert learns from 𝐵 with intensity 1 − 𝛼, source 𝐵 generates a
oisson signal with arrival rate (1 − 𝛼) if 𝜔 = 𝐵 and no signal otherwise. The learning process of the expert is denoted by

(

𝛼𝑡
)

𝑡∈R+
.

e refer to learning exclusively from source 𝐴 — that is, choosing 𝛼 = 1 — as A-learning and to learning exclusively from source
— that is, choosing 𝛼 = 0 — as B-learning.
At 𝑡 = 0, the principal and the expert share a common prior belief 𝑝0 that the state is 𝐴. Subsequently, the principal observes

(

𝛼𝑡
)

𝑡∈R+
as well as learning outcomes. Hence, the belief that the state is 𝐴 remains common throughout the game. Let 𝑝𝑡 denote the

belief at time 𝑡. By Bayes’ rule, as long as the expert’s learning generates no signal, 𝑝𝑡 evolves according to
�̇�𝑡 = − (

2𝛼𝑡 − 1) 𝑝𝑡
(

1 − 𝑝𝑡
)

. (1)

Payoffs. Let 𝑢𝜔𝑥 and 𝑣𝜔𝑥 denote the utility of the principal and the expert respectively, conditional on decision 𝑥 and state 𝜔. The
tates are labelled so that both the principal and the expert strictly prefer taking the decision that matches the state. Moreover,
ndependently of the state, the expert prefers decision 𝑎 relative to the principal and the principal prefers decision 𝑏 relative to the
xpert. In particular, for 𝛥 ≥ 0, the payoff profiles

(

𝑢𝜔𝑥 , 𝑣𝜔𝑥
)

are

𝑃 , 𝐸 𝐴 𝐵
𝑎 1, 1 + 𝛥 −1, −1 + 𝛥
𝑏 −1 + 𝛥, −1 1 + 𝛥, 1

Parameter 𝛥 plays a dual role in our model. First, it determines the importance of choosing the action that matches the state. As
𝛥 increases, choosing the favoured action becomes more appealing and so the value of learning for the principal and the expert
iminishes. When 𝛥 exceeds 2, learning has no value at all because the favoured action delivers higher payoff irrespective of the
tate. Second, 𝛥 is a measure of the disagreement between the principal and the expert. Throughout the paper, we assume that 𝛥
s not too high because all interesting interactions between the principal and the expert take place when the disagreement between
hem is relatively small.

Assumption 1. 𝛥 ≤ 1

Given belief 𝑝, let

𝑈𝑥 (𝑝) ≡ 𝑝𝑢𝐴𝑥 + (1 − 𝑝) 𝑢𝐵𝑥 and 𝑉𝑥 (𝑝) ≡ 𝑝𝑣𝐴𝑥 + (1 − 𝑝) 𝑣𝐵𝑥 (2)

denote the expected payoff of the principal and the expert, respectively, from taking decision 𝑥 immediately.

Aim. The aim is to compare the principal’s payoffs under complete and flexible delegation.
Throughout the paper, quantities without any superscript correspond to flexible delegation, superscript 𝐸 indicates quantities

under complete delegation and superscript 𝑃 indicates principal’s individually optimal learning when the principal has access to
he same learning technology as the expert.

3. Complete delegation

Expert’s optimal learning policy
Under complete delegation, the expert will pursue his individually optimal learning strategy. Indeed, since the principal cannot

intervene, the expert has no reason to pursue a learning strategy different from the one he would pursue if he was facing an individual
decision problem.
3 
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Fig. 1. Expert’s optimal learning strategy.

Che and Mierendorff (2019) fully characterise the solution to the expert’s decision problem and show that the uniquely optimal
earning policy depends on the cost of learning. In that paper, learning is associated with two types of costs. First, while learning,
he decision maker incurs an additive flow cost. Second, learning involves a delay in making the decision and hence in receiving the
ayoff from this decision which is costly because the decision maker discounts future payoffs at an exponential rate. Our setup is a
pecial case of Che and Mierendorff (2019) because there are no additive costs of learning; instead, the discount rate 𝑟 constitutes
he only learning cost.3

Furthermore, we restrict attention to the discount rate which is neither too high nor too low. Lemma 1 proves that for such
intermediate values of discount rate, the expert optimally pursues contradictory learning, a learning policy that dictates devoting full
ttention to the source which generates signal against the state that the expert currently believes to be relatively more likely.4 That
s, the expert chooses 𝛼 = 0 thus learning from source 𝐵 if state 𝐴 is relatively more likely, i.e., 𝑝 > �̌�𝐸 , and chooses 𝛼 = 1 thus

learning from source 𝐴 if state 𝐵 is relatively likely, i.e., 𝑝 < �̌�𝐸 , where �̌�𝐸 is an optimally chosen reference belief.5 In the absence
f a signal, the expert’s belief drifts in the direction which strengthens the original belief. If no signal arrives, the belief eventually
eaches one of the optimally chosen boundary points 𝑝∗𝐸 or �̄�∗𝐸 , at which the expert is sufficiently convinced of the state to make an
mmediate decision without receiving a conclusive signal. Fig. 1 depicts belief updating under contradictory learning that is optimal

for the expert.

Lemma 1. For any 1 ≥ 𝛥 ≥ 0, there exists a threshold �̄�(𝛥) > 0 such that for all 𝑟 ∈ [1, ̄𝑟(𝛥)], the expert’s optimal policy under complete
elegation is contradictory learning with belief thresholds

𝑝∗𝐸 = 𝑟
2(1 + 𝑟) + 𝛥

, (3)

�̄�∗𝐸 = 1 − 𝑟(1 + 𝛥)
2(1 + 𝑟) − 𝛥

, (4)

and �̌�𝐸 implicitly defined as the unique solution of 𝑔𝐸 (𝑝) = 0, where

𝑔𝐸 (𝑝) ∶= 𝑝(1 + 𝛥)
(

1 −
(

𝑝
1 − 𝑝

)𝑟 (1 − �̄�∗𝐸

�̄�∗𝐸

)𝑟)

+ (1 − 𝑝)

(

(

1 − 𝑝
𝑝

)𝑟
(

𝑝∗𝐸

1 − 𝑝∗𝐸

)𝑟

− 1
)

. (5)

Proof. See Appendix A.1. □

Fig. 2 depicts the parameter region of interest to us in which the expert optimally pursues contradictory learning.6 The figure
shows that there is one-to-one relationship between 𝛥 and threshold �̄�(𝛥). Hence, instead of fixing 𝛥 and allowing 𝑟 to vary, Lemma 1
can be equivalently restated fixing 𝑟 and letting 𝛥 to vary.

Corollary 1. For any 𝑟 ≥ 1, there exists a threshold 1 ≥ 𝛥(𝑟) ≥ 0 such that for all 𝛥 ∈
[

0, 𝛥(𝑟)
]

, the expert’s optimal policy under complete
delegation is contradictory learning.

Impact of complete delegation on the principal
Due to the symmetry in expert and principal’s payoff structures, had the principal access to the expert’s learning technology, at

ny 𝑟 ∈ [1, ̄𝑟(𝛥)], just like the expert, she would also optimally choose to pursue contradictory learning policy — that is, the principal
would choose to devote full attention to the source which generates signal against the state that she currently believes to be relatively
more likely.7 At a particular belief 𝑝, due to bias 𝛥, the principal and the expert may disagree on the source of information from
which to learn or whether to learn at all. In particular, because irrespective of the state, the expert prefers decision 𝑎 relative to
the principal, the expert’s learning region is shifted to the left relative to the principal’s individually optimal learning region, as
Lemma 2 proves and Fig. 3(a) illustrates. Thus, for example, the autonomous expert optimally takes immediate decision 𝑎 or 𝑏 at

3 On page 2998, Che and Mierendorff (2019) note that in their setting, either additive learning cost or discount rate can be zero, but not both.
4 Lemma 1 corresponds to a special case of case (ii) in Theorem 1 in Che and Mierendorff (2019) with flow costs of learning switched off.
5 Since 𝛥 > 0, �̌�𝐸 is less than 1/2.
6 The statement of Lemma 1 can be weakened. Indeed, for any 1 ≥ 𝛥 ≥ 0, there exist thresholds 1 ≥ 𝑟(𝛥) > 0 and �̄�(𝛥) > 0 such that for all 𝑟 ∈

[

𝑟(𝛥), ̄𝑟(𝛥)],
he expert’s optimal policy under complete delegation is contradictory learning with belief thresholds (3) and (4). The lower bound 𝑟(𝛥) is equal to 1 at 𝛥 = 0
nd decreasing in 𝛥. Whenever the discount rate 𝑟 is below 𝑟(𝛥), at some beliefs, the expert would optimally learn not to contradict but to confirm his current

belief. We, however, restrict attention to 𝑟 ≥ 1 because our proof of Theorem 1 requires this assumption.
7 Subject to re-labelling the states and actions, the payoffs of the principal are identical to those of the expert. However, the contradictory learning policy

hat is optimal for the expert is not optimal for the principal.
4 
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Fig. 2. The parameter region in which Lemma 1 holds.

Fig. 3. The optimal learning policy for each belief. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)

lower 𝑝 than the principal would have liked. Similarly, for the expert, the switch of learning from one source to another is shifted
o the left relative to the principal.

Lemma 2. For any 1 ≥ 𝛥 > 0 and all 𝑟 ∈ [1, ̄𝑟(𝛥)], 𝑝∗𝐸 < 𝑝∗𝑃 and �̄�∗𝐸 < �̄�∗𝑃 and �̌�𝐸 < �̌�𝑃 .

Proof. See Appendix A.2. □

Fig. 3(b) compares the principal’s value under complete delegation to principal’s value in the first-best world where the principal
has access to the same learning technology as the expert. As a result of disagreement on the optimal learning strategy at a given 𝑝,
5 
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the principal’s expected payoff when the expert undertakes learning on her behalf falls short of his first-best expected payoff.8
Fig. 3(b) also demonstrates that whenever 𝑟 ∈ [1, ̄𝑟(𝛥)], for some not-too-low 𝑝, delegation of learning allows the principal to

obtain higher payoff than the payoff she obtains from immediate decision. However, for sufficiently low 𝑝, the principal prefers an
immediate decision to any learning, while the expert finds it optimal to continue learning. Hence, for low 𝑝, the principal would
prefer to take over the final decision making from the expert.

4. Main result

Naturally, if the principal’s and the expert’s preferences are sufficiently misaligned, the principal is always better off under
flexible delegation than under complete delegation. The main result of the paper is that, when the preferences are sufficiently
closely aligned, one type of delegation does not unambiguously dominate the other. On the one hand, flexible delegation allows the
principal to curtail expert’s learning, thus eliminating the cost of delay in decision when she deems such delay excessive. On the
other hand, the threat of the principal’s intervention makes the expert favour the information source that avoids early termination
of learning. Consequently, flexible delegation makes the expert switch to information source 𝐴 at lower beliefs than under complete
delegation, which makes the principal worse off.

Theorem 1 states the main result formally; below we provide intuition for the result. The statement of the theorem utilises
Corollary 1 to fix the order of quantifiers.

Theorem 1. For any 𝑟 ≥ 1, there exists a threshold 0 ≤ 𝛥∗(𝑟) ≤ 𝛥(𝑟) such that
• for 𝛥 < 𝛥∗(𝑟), there exist a subset of 𝑝 for which the principal is strictly better off under complete delegation and a subset of 𝑝 for
which the principal is strictly better off under flexible delegation, the principal is indifferent between both types of delegation otherwise;

• for 𝛥 ≥ 𝛥∗(𝑟), the principal is strictly better off under flexible delegation for some 𝑝 and is indifferent between both types of delegation
otherwise.

Proof. See Appendix A.3 □

Because the expert’s learning regions are shifted to the left relative to the principal’s individually optimal learning regions, under
lexible delegation, any principal’s intervention is necessarily one-sided. For low 𝑝, the principal stops the expert’s learning from
ource 𝐴 at higher 𝑝 than the expert would have liked. For high 𝑝, the principal would like to prolong learning from source 𝐵
elative to the expert. The principal, however, cannot do anything about this as she cannot coerce the expert to learn for longer

than the expert finds optimal.
Since the principal’s interventions are necessarily one-sided, flexible delegation does not affect the expert’s B-learning contin-

uation strategy starting from any belief. Under B-learning in the absence of a signal, belief 𝑝 gradually increases. Hence, despite
principal’s intervention at some low 𝑝, at higher 𝑝 the expert finds it optimal to pursue the same B-learning strategy under flexible
and complete delegation — in either case, the expert optimally stops his B-learning when the posterior belief drifts to �̄�∗𝐸 . Thus,
the merits of flexible delegation to the principal should be assessed on the basis of its impact on expert’s A-learning.

Under flexible delegation, the ability to override the expert enables the principal to stop expert’s A-learning whenever the
posterior belief 𝑝 is sufficiently low to make immediate decision 𝑏 optimal. Eliminating the cost of the expert’s prolonged learning
is the main benefit of flexible delegation to the principal.

At the same time, due to the possibility of early termination, the value the expert derives from A-learning goes down and so the
expert switches to learning from source 𝐴 at a lower belief than he would have done absent the principal’s intervention. The delay
in the switch to A-learning hurts the principal as by Lemma 2, the principal wants the expert to switch to 𝐴-learning early on, that
is, at any belief in

[

𝑝∗𝑃 , �̌�𝑃
]

, with �̌�𝑃 > �̌�𝐸 .
Overall, whether at some beliefs, flexible delegation makes the expert’s learning strategy even more sub-optimal for the principal

than it is under complete delegation depends on whether at �̌�𝐸 , the belief at which the autonomous expert switches from A-learning
to B-learning, the principal prefers the expert’s B-learning to no learning. If so, then under flexible delegation, the principal intervenes
in the belief region where the autonomous expert pursues A-learning, and such intervention makes the expert delay switching to
source 𝐴 to the detriment of the principal. In contrast, if at �̌�𝐸 the principal prefers the immediate decision to expert’s B-learning,
then principal’s intervention terminates expert’s B-learning in the belief region where the autonomous expert pursues B-learning,
and such intervention triggers no strategic response from the expert.

Fig. 4 depicts the principal’s payoffs when 𝛥 is sufficiently low so that at �̌�𝐸 , the principal’s payoff under expert’s B-learning
s higher than the payoff from the immediate decision. In this case, the principal prefers complete delegation for initial beliefs in
he green region and flexible delegation for beliefs in the red region. In other words, when the interests of the principal and the
xpert are sufficiently closely aligned, the principal’s choice between flexible delegation and complete delegation involves a trade
ff between improving payoff for sufficiently low 𝑝, at which flexible delegation allows terminating expert’s prolonged learning, and
ecreasing payoffs for some higher beliefs, at which the principal would be better off if the expert pursued his first-best A-learning
olicy.

8 The principal’s value function under expert’s optimal learning is discontinuous at a belief whenever the belief process is certain to move away from that
belief. The beliefs with discontinuities correspond to thresholds where the expert switches to a different information source. In Fig. 3(b), the discontinuity occurs
t 𝑝 = �̌�𝐸 .
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Fig. 4. Principal’s value function when 𝛥 is low. The green line is the principal’s value from immediate decision; the black dashed line is the principal’s value
under complete delegation; the red line is the principal’s value under flexible delegation. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Fig. 5. Principal’s value function when 𝛥 is high. The green line is the principal’s value from immediate decision; the black dashed line is the principal’s value
under complete delegation; the red line is the principal’s value under flexible delegation. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

In contrast, Fig. 5 depicts the principal’s payoffs when 𝛥 is sufficiently high so that at �̌�𝐸 , the principal’s payoff under the expert’s
B-learning is lower than her payoff from the immediate decision. In this case, under flexible delegation the principal intervenes when
the expert pursues B-learning. Such intervention does not trigger a strategic response from the expert. Since flexible delegation does
ot affect the expert’s learning on the region where the principal never intervenes, flexible delegation does not have a cost, but it
till has the benefit of improving the principal’s payoff at low 𝑝; that is, in the figure, there is no green region, but there is a red
egion.

Intuitively, as 𝑟 increases, any delay in decision becomes costlier and so the principal and the expert derive less value from
earning. As a result, the principal and expert’s learning regions shrink, thereby magnifying their disagreement about the information
ource from which to learn. Consequently, it can be expected that as 𝑟 increases, the possibility of principal’s intervention makes
xpert’s learning strategy more sub-optimal for a smaller set of 𝛥. Indeed, Fig. 6 illustrates that threshold 𝛥∗(𝑟) decreases with 𝑟.
7 
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Fig. 6. The union of the blue and the red regions corresponds to parameters 𝛥 and 𝑟 that are admissible in Theorem 1. In the red region, for some 𝑝 the
principal is better off under complete delegation than under flexible delegation. (For interpretation of the references to colour in this figure legend, the reader
s referred to the web version of this article.)

5. Discussion and concluding remarks

In our model, the expert accesses information sources for free and so discount rate 𝑟, which is common to the principal and
he expert, is the only cost of learning. It is natural to consider situations in which the expert additionally has to pay some flow
ost, 𝑐 ≠ 0, for utilising an information source. In a decision problem, the impact of flow cost 𝑐 and discount rate 𝑟 on the optimal

learning policy is qualitatively the same — both costs reduce the value of learning, thus compressing from both sides the interval
of beliefs in which some learning is optimal. In our model, the flow cost that is borne by the expert alone reduces the scope for
the principal’s intervention under the flexible delegation. The main benefit of the flexible delegation is that it allows the principal
to curtail expert’s A-learning when the principal is already sufficiently confident that 𝑏 is the right decision to make. With flow
cost 𝑐, the autonomous expert, who bears this cost, is naturally averse to prolonged learning — that is, the expert’s individually
optimal stopping threshold 𝑝∗𝐸 increases with 𝑐 — and so, the range of beliefs at which the principal benefits from the ability to
terminate the expert’s learning shrinks. For sufficiently high 𝑐, the expert may even want to terminate A-learning at higher beliefs
than the principal, who does not internalise 𝑐. Clearly, in this case, flexible and complete delegation are payoff equivalent for the
rincipal.9 We conjecture, however, that at lower 𝑐, the results from Theorem 1 remain qualitatively unchanged and when 𝛥 is

small, the strategic response of the expert may still sometimes make the principal worse off under flexible delegation than under
complete delegation.

We did not explicitly specify whether the principal knows her prior belief when she makes the choice between complete and
flexible delegation. Our analysis provides insights that are relevant regardless of this assumption. In some situations, the principal
may need to determine a contractual arrangement for learning about a specific issue and so will be aware of her prior assessment
at the time of contracting. For example, a client may ask a financial consultant for an advice on whether to sell a particular stock,
knowing the current market sentiment or the company’s latest financial statement.10 In such situations, to avoid unnecessary delay,
the principal will not engage the expert when she is already sufficiently confident about the right decision; she will only engage the
expert if she derives some value from the expert’s learning, in which case complete delegation is superior to flexible delegation (see
green region in Fig. 4). In other words, in cases like this, the principal’s payoff from delegation of learning will be the upper envelope
of payoffs under flexible and complete delegation. In other situations, the principal may be required to decide on a contractual

9 The cost 𝑐 above which 𝑝∗𝐸 ≥ 𝑝∗𝑃 can be easily derived and is given by 𝑐 = 𝑟(𝛥+2𝑟+4)𝛥
2𝑟+2−𝛥

.
10 This example fits well our model. For the most part, it is reasonable to expect that the consultant wants to make the right decision given the current

entiment of the stock market. Nevertheless, he may have a bias towards one of the two actions, stemming perhaps from the risk exposure of his overall portfolio.
urthermore, such financial advice is often provided for free to retail bank clients who do not necessarily have to heed this advice.
8 
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arrangement before her prior belief is revealed. For example, the government undertakes learning and has the decision-making
uthority on all issues, and the electorate has little scope to fine tune the contractual arrangements to the prior belief on each specific
ssue. According to Theorem 1, in situations like this, while flexible delegation unambiguously dominates complete delegation when

the disagreement between the principal and the expert is large, when the disagreement is small, the choice between the contractual
rrangements is less clear cut and will generally depend on the distribution of priors and the relative importance of various issues.
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Appendix. Technical appendix

A.1. Proof of Lemma 1

Under complete delegation, the expert solves an optimal control free-boundary problem. Let 𝑉 denote the expert’s value function.
By the dynamic programming principle, wherever it is differentiable, 𝑉 can be characterised through the Hamilton–Jacobi–Bellman
(HJB) equation:

𝑟𝑉 (𝑝) ≥ max
𝛼

{

𝑝𝛼
(

𝑣𝐴𝑎 − 𝑉 (𝑝)
)

+ (1 − 𝑝) (1 − 𝛼)
(

𝑣𝐵𝑏 − 𝑉 (𝑝)
)

− (2𝛼 − 1) 𝑝 (1 − 𝑝)𝑉 ′ (𝑝)

}

, 𝑝 ∈ (0, 1) (A.1)

subject to the boundary condition11

𝑉 (𝑝) = 𝑉𝑎 (𝑝) ∨ 𝑉𝑏 (𝑝) . (A.2)

Since the HJB equation is linear in 𝛼, the optimal policy is a bang–bang solution 𝛼(𝑝) ∈ {0, 1}, except for posteriors where the
derivative of the objective vanishes.

Theorem 1 in Che and Mierendorff (2019) shows that the expert’s value function is the upper envelope of values from no learning,
A-learning, B-learning as well as a learning policy that we call confirmatory learning.12 In what follows, we provide functional forms
or the quantities characterising the optimal learning policy which we require for the subsequent analysis.

Contradictory A-learning
Setting 𝛼 = 1 corresponds to A-learning. Value derived from A-learning satisfies the ordinary differential equation

𝑟𝑉1(𝑝) = 𝑝
(

𝑣𝐴𝑎 − 𝑉1(𝑝)
)

− 𝑝(1 − 𝑝)𝑉 ′
1 (𝑝) (A.3)

The solution to this ODE with boundary condition 𝑉1(𝑞) = 𝑣 is well-defined for 𝑞 ∈ (0, 1) and is given by

𝑉1(𝑝; 𝑞 , 𝑣) = 1
1 + 𝑟

(

𝑝𝑣𝐴𝑎 +
1 − 𝑝
1 − 𝑞

(

𝑞(1 − 𝑝)
𝑝(1 − 𝑞)

)𝑟
((1 + 𝑟)𝑣 − 𝑞 𝑣𝐴𝑎 )

)

. (A.4)

Let 𝑝∗𝐸 denote the belief at which the expert optimally chooses to terminate A-learning. At 𝑝∗𝐸 , the expert is sufficiently
pessimistic about state 𝐴 that he makes the immediate decision 𝑏. Value matching and smooth pasting at 𝑝∗𝐸 pins down the boundary
belief:

𝑝∗𝐸 =
𝑟𝑣𝐵𝑏

𝑣𝐴𝑎 − 𝑣𝐴𝑏 + 𝑟
(

𝑣𝐵𝑏 − 𝑣𝐴𝑏
) , (A.5)

which, upon substituting the expert’s payoffs, is equivalent to (3). Hence, the value from the optimally terminated A-learning is

𝑉 ∗
1 (𝑝) =

1
1 + 𝑟

(

𝑝𝑣𝐴𝑎 + (1 − 𝑝)𝑣𝐵𝑏

(

1 − 𝑝
𝑝

)𝑟
(

𝑝∗𝐸

1 − 𝑝∗𝐸

)𝑟)

. (A.6)

By direct computations, function 𝑉 ∗
1 (𝑝) is strictly convex on

[

𝑝∗𝐸 , 1
]

.

11 Operator ∨ is the binary max operator.
12 Che and Mierendorff (2019) refer to this learning policy as opposite-biased learning.
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Contradictory B-learning
By setting 𝛼 = 0 and going through the similar steps, we can derive the value from the optimally terminated B-learning. In

particular, value derived from B-learning satisfies the ordinary differential equation

𝑟𝑉0(𝑝) = (1 − 𝑝)
(

𝑣𝐵𝑏 − 𝑉0(𝑝)
)

+ 𝑝(1 − 𝑝)𝑉 ′
0 (𝑝). (A.7)

The solution to this ODE with boundary condition 𝑉0(𝑞) = 𝑣 is well-defined for 𝑞 ∈ (0, 1) and is given by

𝑉0(𝑝; 𝑞 , 𝑣) = 1
1 + 𝑟

(

(1 − 𝑝)𝑣𝐵𝑏 +
𝑝
𝑞

(

(1 − 𝑞)𝑝
(1 − 𝑝)𝑞

)𝑟
((1 + 𝑟)𝑣 − (1 − 𝑞)𝑣𝐵𝑏 )

)

. (A.8)

The expert optimally terminates B-learning at belief �̄�∗𝐸 , at which he is sufficiently optimistic about state 𝐴 to make decision 𝑎.
By smooth pasting and value matching,

�̄�∗𝐸 = 1 − 𝑟𝑣𝐴𝑎
𝑟(𝑣𝐴𝑎 − 𝑣𝐵𝑎 ) + 𝑣𝐵𝑏 − 𝑣𝐵𝑎

, (A.9)

which, upon substituting the expert’s payoffs, is equivalent to (4). Hence, the value from the optimally terminated B-learning is
𝑉 ∗
0 (𝑝) =

1
1 + 𝑟

(

(1 − 𝑝)𝑣𝐵𝑏 + 𝑝𝑣𝐴𝑎

(

𝑝
1 − 𝑝

)𝑟 (1 − �̄�∗𝐸

�̄�∗𝐸

)𝑟)

. (A.10)

By direct computations, function 𝑉 ∗
0 (𝑝) is strictly convex on

[

0, �̄�∗𝐸].

Confirmatory learning
Under confirmatory learning policy the expert focuses all his attention on the source capable of generating a conclusive signal

about state he thinks to be more likely. If no signal arrives, beliefs converge to the absorbing belief, 𝑝∗𝐸 , where 𝛼 = 1∕2 and the
expert does not take an action unless a signal arrives. We denote the value of the learning policy with 𝛼 = 1∕2, by 𝑉 ∗(𝑝). It is
immediate that

𝑉 ∗(𝑝) = 𝑝E
[

𝑒−𝑟𝜏𝑣𝐴𝑎 ∣ 𝜔 = 𝐴
]

+ (1 − 𝑝)E
[

𝑒−𝑟𝜏𝑣𝐵𝑏 ∣ 𝜔 = 𝐵
]

(A.11)

=
𝑝𝑣𝐴𝑎 + (1 − 𝑝)𝑣𝐵𝑏

1 + 2𝑟 (A.12)

Further, by smooth pasting and value matching of the above equation and either (A.3) or (A.7) we can derive the absorbing belief
𝑝∗𝐸 :

𝑝∗𝐸 =
𝑣𝐵𝑏

𝑣𝐵𝑏 + 𝑣𝐴𝑎
(A.13)

Taking 𝑉 ∗(𝑝∗𝐸 ) as a boundary condition, the value from confirmatory learning for the expert is:

𝑉 𝐸
𝑐 𝑓 (𝑝) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1
1+𝑟

(

(1 − 𝑝)𝑣𝐵𝑏 + 1
1+2𝑟 (1 − 𝑝)−𝑟𝑝1+𝑟𝑣𝐴𝑎

(

𝑣𝐴𝑎
𝑣𝐵𝑏

)𝑟)

𝑝 < 𝑝∗𝑃
2𝑣𝐴𝑎 𝑣

𝐵
𝑏

(𝑣𝐴𝑎 +𝑣𝐵𝑏 )(1+2𝑟)
𝑝 = 𝑝∗𝑃

1
1+𝑟

(

𝑝𝑣𝐴𝑎 + 1
1+2𝑟

(

(1 − 𝑝)1+𝑟𝑝−𝑟𝑣𝐵𝑏

(

𝑣𝐵𝑏
𝑣𝐴𝑎

)𝑟))

𝑝 > 𝑝∗𝑃
(A.14)

Optimal learning policy
Let �̄�𝐸 (𝛥) denote the smallest discount rate 𝑟 such that at any prior belief, the expert prefers making decision immediately to

some learning. The expected payoff from the immediate decision is the lowest when the expert is indifferent between decisions 𝑎
nd 𝑏 — that is, at a belief �̂� such that

𝑉𝑎 (�̂�) = 𝑉𝑏 (�̂�) ⟹ �̂� =
𝑣𝐵𝑏 − 𝑣𝐵𝑎

𝑣𝐴𝑎 − 𝑣𝐴𝑏 + 𝑣𝐵𝑏 − 𝑣𝐵𝑎
= 2 − 𝛥

4
(A.15)

At this belief, equating the expected value of immediate decision to the value from learning for 𝛿 → 0 units of time and only then
aking the decision yields

�̄�𝐸 (𝛥) =

(

𝑣𝐵𝑏 − 𝑣𝐵𝑎
) (

𝑣𝐴𝑎 − 𝑣𝐴𝑏
)

𝑣𝐵𝑏 𝑣
𝐴
𝑎 − 𝑣𝐵𝑎 𝑣

𝐴
𝑏

= 4 − 𝛥2

2𝛥
. (A.16)

Note that

lim
𝛥→0+

�̄�𝐸 (𝛥) = ∞.

That is, for very small bias 𝛥 the expert prefers some learning for any discount rate 𝑟.
Let 𝑟𝐸 (𝛥) denote the highest discount rate at which the optimal learning policy features confirmatory learning. According

to Che and Mierendorff (2019), confirmatory learning is part of the optimal policy if and only if at 𝑝∗𝐸 it is optimal to pursue
10 
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the confirmatory strategy.
In order to characterise 𝑟𝐸 (𝛥), we make the following observation.

Lemma 3. 𝑉 ∗
0 (𝑝

∗𝐸 ) > 𝑉 ∗
1 (𝑝

∗𝐸 ) for 𝛥 > 0.

Proof. By direct computations,

𝑉 ∗
0 (𝑝

∗𝐸 ) − 𝑉 ∗
1 (𝑝

∗𝐸 ) = 1 + 𝛥
(1 + 𝑟)(2 + 𝛥)

((

𝑟
2 − 𝛥 + 𝑟(1 − 𝛥)

)𝑟
−
(

𝑟(1 + 𝛥)
2 + 𝑟 + 𝛥

)𝑟)

. (A.17)

For 1 > 𝛥 > 0 and 𝑟 > 0, the expression above is positive because
𝑟

2 − 𝛥 + 𝑟(1 − 𝛥)
>

𝑟(1 + 𝛥)
2 + 𝑟 + 𝛥

. □

Hence, the confirmatory learning policy will not be part of the individually optimal strategy for the expert if and only if
∗
0 (𝑝

∗𝐸 ) ≥ 𝑉 ∗(𝑝∗𝐸 ) or, equivalently,
(

𝑟𝑣𝐴𝑎
𝑣𝐴𝑎 − (1 + 𝑟)𝑣𝐴𝑏

)𝑟

− 1
1 + 2𝑟 ≥ 0. (A.18)

The value of 𝑟 that makes the above condition hold with equality is the threshold value 𝑟𝐸 (𝛥). We require that 𝑟𝐸 (𝛥) ≤ 1 for all
𝛥. After substituting the expert’s payoffs, the left-hand side of (A.18) becomes

𝑓 (𝑟) ∶=
(

𝑟
2 − 𝛥 + 𝑟(1 − 𝛥)

)𝑟
− 1

1 + 2𝑟 . (A.19)

At 𝛥 = 0,

𝑓 (𝑟) =
( 𝑟
2 + 𝑟

)𝑟
− 1

1 + 2𝑟 , (A.20)

which is equal to zero if 𝑟 = 1 and is strictly positive if 𝑟 > 1. Thus, for 𝛥 = 0, inequality (A.18) is satisfied for all 𝑟 ≥ 1. Furthermore,
y inspection, 𝑓 (𝑟) is increasing in 𝛥 and so inequality (A.18) is also satisfied for all 𝛥 > 0 and all 𝑟 ≥ 1.

Upper envelope of contradictory A- and B-learning
Since 𝑉 ∗

1 (𝑝
∗𝐸 ) > 𝑉 ∗

0 (𝑝
∗𝐸 ), 𝑉 ∗

0 (�̄�
∗𝐸 ) > 𝑉 ∗

1 (�̄�
∗𝐸 ), 𝑉 ∗

1 intersects 𝑉 ∗
0 at least once. Lemma 4 shows that the intersection is unique.

Lemma 4. For 𝑟 ≥ 1, 𝑉 ∗
1 intersects 𝑉 ∗

0 once and from above.

Proof. The argument follows closely the proof of Lemma 2 in Che and Mierendorff (2019). If at 𝑝, 𝑉 ∗
0 (𝑝) = 𝑉 ∗

1 (𝑝) = 𝑉 (𝑝), then
umming (A.3) and (A.7) yields:

𝑉 ′
0 (𝑝) − 𝑉 ′

1 (𝑝) =
1

𝑝(1 − 𝑝)
(

(1 + 2𝑟)𝑉 (𝑝) − (

𝑝𝑣𝐴𝑎 + (1 − 𝑝)𝑣𝐵𝑏
))

(A.21)

= 1 + 2𝑟
𝑝(1 − 𝑝)

(

𝑉 (𝑝) − 𝑉 ∗(𝑝)
)

, (A.22)

where 𝑉 ∗ is the value of the learning policy with 𝛼 = 1∕2 defined in (A.12).
Since whenever 𝑟 ≥ 1, 𝑉 lies above 𝑉 ∗, whenever 𝑉 ∗

1 and 𝑉 ∗
0 intersect, 𝑉 ′

0 > 𝑉 ′
1 . Consequently, 𝑉 ∗

1 intersects 𝑉 ∗
0 once and from

bove. □

Function 𝑉 ∗
1 intersects 𝑉 ∗

0 at belief �̌�𝐸 implicitly defined as the unique solution in
[

𝑝∗𝐸 , �̄�∗𝐸
]

to 𝑔𝐸 (𝑝) = 0, where function

𝑔𝐸 (𝑝) ∶= 𝑉 ∗
1 (𝑝) − 𝑉 ∗

0 (𝑝), (A.23)

which, upon substituting the expert’s payoffs, is equivalent to (5).

A.2. Proof of Lemma 2

Following similar steps as in the proof of Lemma 1, we can derive the belief 𝑝∗𝑝 at which the principal would terminate A-learning
if she had access to the same information technology as the expert:

𝑝∗𝑝 =
𝑟𝑢𝐵𝑏

𝑢𝐴𝑎 − 𝑢𝐴𝑏 + 𝑟(𝑢𝐵𝑏 − 𝑢𝐴𝑏 )
=

𝑟(1 + 𝛥)
2(1 + 𝑟) − 𝛥

(A.24)

Similarly, the principal would terminate her individually optimal B-learning at belief

�̄�∗𝑝 = 1 − 𝑟𝑢𝐴𝑎
𝑟𝑢𝐴𝑎 − 𝑢𝐵𝑎 − 𝑟𝑢𝐵𝑎 + 𝑢𝐵𝑏

= 1 − 𝑟
2(1 + 𝑟) + 𝛥

(A.25)
11 
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Given the analytical expressions for the thresholds, by direct computation:

𝑝∗𝑃 − 𝑝∗𝐸 =
𝛥𝑟(𝛥 + 4 + 2𝑟)
4(1 + 𝑟)2 − 𝛥2

> 0 (A.26)

since by assumption, 1 > 𝛥 > 0 and 𝑟 > 0.
Similarly, by direct computation:

𝑝∗𝑃 − 𝑝∗𝐸 =
𝛥𝑟(𝛥 + 4 + 2𝑟)
4(1 + 𝑟)2 − 𝛥2

> 0 (A.27)

as above.
At 𝛥 = 0, the payoffs of the principal and the expert coincide and so �̌�𝐸 = �̌�𝑃 . By Lemma 5, which is stated below, �̌�𝐸 is decreasing

in 𝛥. Since subject to re-labelling the states and actions, the payoffs of the principal are identical to those of the expert, an equivalent
argument can be used to show that �̌�𝑃 is increasing in 𝛥. Hence, for any 𝛥 > 0, �̌�𝐸 < �̌�𝑃 .

Lemma 5. Let �̌�𝐸 ∈
[

𝑝∗𝐸 , �̄�∗𝐸
]

be implicitly defined as the unique solution of 𝑔𝐸 (𝑝) = 0, where 𝑔𝐸 (𝑝) is given in (5). Then, �̌�𝐸 is decreasing
in 𝛥.

Proof. By the implicit function theorem,
𝜕
𝜕 𝛥 �̌�

𝐸 = − 𝜕 𝑔𝐸∕𝜕 𝛥
𝜕 𝑔𝐸∕𝜕 𝑝

|

|

|

|

|𝑝=�̌�𝐸
. (A.28)

By Lemma 4, at 𝑝 = �̌�𝐸 , 𝜕 𝑔𝐸∕𝜕 𝑝 < 0 and so the sign of the derivative 𝜕 ̌𝑝𝐸∕𝜕 𝛥 is the same as the sign of the derivative 𝜕 𝑔𝐸∕𝜕 𝛥 at
𝑝 = �̌�𝐸 , where 𝑔𝐸 (𝑝) = 0.

It will be convenient to change variables to

𝜌 ∶=
𝑝

1 − 𝑝
, 𝜌 ∶=

𝑝∗𝐸

1 − 𝑝∗𝐸
, and �̄� ∶=

�̄�∗𝐸

1 − �̄�∗𝐸
. (A.29)

After the change of variables, function 𝑔𝐸 (𝑝) is equal to (1 − 𝑝)ℎ(𝜌), where

ℎ(𝜌) ∶= 𝜌(1 + 𝛥)
(

1 −
(

𝜌
�̄�

)𝑟)

+
(𝜌

𝜌

)𝑟
− 1. (A.30)

Consequently, the requirement that 𝑔𝐸 (𝑝) = 0 is equivalent to ℎ(𝜌) = 0. Since �̌�𝐸 ∈
[

𝑝∗𝐸 , �̄�∗𝐸
]

, the solution of ℎ(𝜌) = 0 must belong

to the interval
[

𝜌, �̄�
]

. Furthermore, the derivative 𝜕 𝑔𝐸∕𝜕 𝛥 has the same sign as the derivative
𝜕 ℎ
𝜕 𝛥 = 𝜌

(

1 −
(𝜌

𝜌

)1+𝑟
−
(

1 + 3 + 2𝑟
1 + 𝛥

1
�̄�

) (
𝜌
�̄�

)𝑟
)

. (A.31)

When 𝛥 = 0, after substituting in 𝜌 and �̄�,

ℎ(𝜌) = 𝜌
(

1 −
( 𝑟𝜌
2 + 𝑟

)𝑟)
+
(

𝑟
(2 + 𝑟)𝜌

)𝑟
− 1, (A.32)

and so the unique solution of ℎ(𝜌) = 0 is 𝜌 = 1. Then, the derivative
𝜕 ℎ
𝜕 𝛥

|

|

|

|

𝛥=0,
ℎ(𝜌)=0

= 1 − (1 + 2𝑟)
( 𝑟
2 + 𝑟

)𝑟
< 0 (A.33)

for all 𝑟 ≥ 1.
When 𝛥 = 1, after substituting in 𝜌 and �̄�,

𝜕 ℎ
𝜕 𝛥

|

|

|

|𝛥=1
= 𝜌

(

1 −
(

𝑟
(3 + 𝑟)𝜌

)1+𝑟
− 2𝑟(1 + 𝑟)(1 + 2𝑟)(𝑟𝜌)𝑟

)

. (A.34)

Evaluating this derivative at 𝜌 = 𝜌,
𝜕 ℎ
𝜕 𝛥

|

|

|

|

𝛥=1,
𝜌=𝜌

= −2𝑟
𝑟
(1 + 𝑟)(1 + 2𝑟)

(

𝑟2

3 + 𝑟

)1+𝑟
< 0 (A.35)

for all 𝑟 ≥ 1. Furthermore, the derivative of 𝜕 ℎ
𝜕 𝛥
|

|

|𝛥=1
with respect to 𝜌 is negative at 𝜌 = 𝜌 and decreasing for all 𝑟 ≥ 1:

𝜕
𝜕 𝜌

(

𝜕 ℎ
𝜕 𝛥

|

|

|

|𝛥=1

)

|

|

|

|

|𝜌=𝜌
= 1 + 𝑟 − 2𝑟(1 + 2𝑟)(1 + 𝑟)2

(

𝑟2

3 + 𝑟

)𝑟
< 0 (A.36)

and
𝜕2

𝜕 𝜌2
(

𝜕 ℎ
𝜕 𝛥

|

|

|

|𝛥=1

)

= − 𝑟(1 + 𝑟)
(3 + 𝑟)𝜌2

(

𝑟
(

𝑟
(3 + 𝑟)𝜌

)𝑟
+ 2𝑟(1 + 𝑟)(3 + 𝑟)(1 + 2𝑟)𝜌(𝑟𝜌)𝑟

)

< 0. (A.37)

Hence, 𝜕 ℎ | < 0 at ℎ(𝜌) = 0 for all 𝑟 ≥ 1.
𝜕 𝛥 |
|𝛥=1

12 
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Fig. A.7. Numerical solution to system (A.44)–(A.45).

Given that when 𝛥 = 0 and 𝛥 = 1, 𝜕 ℎ
𝜕 𝛥 evaluated at ℎ(𝜌) = 0 is negative for all 𝑟 ≥ 1, if this derivative never changes its sign, it is

negative everywhere. By contradiction, suppose that there exit 𝜌 and 𝛥 that satisfy ℎ(𝜌) = 0 and
𝜕2ℎ
𝜕 𝛥2

= 𝑟(1 + 𝑟)
𝜌2

𝑟2

(

(𝜌

𝜌

)𝑟+2
−

(3 + 2𝑟)2
(1 + 𝛥)3𝜌3

(

𝜌
�̄�

)𝑟+2
)

= 0. (A.38)

After some algebraic manipulations, requiring that ℎ(𝜌) = 0 and 𝜕2ℎ
𝜕 𝛥2 = 0 hold simultaneously is equivalent to solving the system of

on-linear equations:

𝜌(1 + 𝛥) =
1 −

(

𝜌∕𝜌
)𝑟

1 − (𝜌∕�̄�)𝑟
(A.39)

𝜌(1 + 𝛥) = (3 + 2𝑟)2∕3
(

𝜌∕�̄�
𝜌∕𝜌

)
𝑟+2
3

(A.40)

Define new variables

𝑥 =
𝜌

𝜌
and �̄� =

𝜌
�̄�
, (A.41)

where 0 < 𝑥 ≤ �̄� < 1. Expressing 𝜌 and 𝛥 in the new variables yields13

𝛥 =
−𝑟(𝑟 + (2 + 𝑟)�̄�𝑥) +

√

𝑟4 + 2𝑟2(𝑟2 − 2)�̄�𝑥 + (2 + 𝑟)4�̄�2𝑥2

2(1 + 𝑟)�̄�𝑥
(A.42)

and

𝜌 = 𝑟
(2 + 𝑟 + 𝛥)𝑥

. (A.43)

In new variables, system (A.39)–(A.40) is

𝜌(1 + 𝛥) = 1 − 𝑥𝑟

1 − �̄�𝑟
(A.44)

𝜌(1 + 𝛥) = (3 + 2𝑟)2∕3
(

�̄�
𝑥

)
𝑟+2
3

. (A.45)

Numerical methods yield a unique solution (𝑥, �̄�) satisfying the requirement that 0 < 𝑥 ≤ �̄� < 1 (see Fig. A.7(a)). However, at
this solution, 𝛥 is negative for all 𝑟 ≥ 1 (see Fig. A.7(b)). Since there is no admissible solution to system (A.44)–(A.45), derivative
𝜕 ℎ
𝜕 𝛥 evaluated at ℎ(𝜌) = 0 never changes its sign and is negative for all admissible parameter values. □

A.3. Proof of Theorem 1

Preliminary observation
Lemma 6 proves that for 𝑟 ∈ [1, 𝑟 (𝛥)], under flexible delegation, the expert would never pursue the confirmatory learning policy.

This observation reduces the types of effects flexible delegation can have on the expert’s learning strategy.

13 𝛥 is a solution to a quadratic equation. One root of that equation is always negative and so can be discarded.
13 
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Lemma 6. If 1 ≤ 𝑟 (𝛥) ≤ 𝑟 (𝛥), then 𝑉 ∗
0 (𝑝) ⩾ 𝑉 𝐸

𝑐 𝑓 (𝑝) for all 𝑝.

Proof. Since, 1 ≤ 𝑟 (𝛥) ≤ 𝑟 (𝛥), under complete delegation, the expert uses only contradictory learning policy for any 𝑝. Hence,
𝑉 ∗
0
(

�̌�𝐸
)

= 𝑉 ∗
1
(

�̌�𝐸
)

⩾ 𝑉 𝐸
𝑐 𝑓

(

�̌�𝐸
)

. In addition, 𝑉 ∗
0 (𝑝) ⩾ 𝑉 𝐸

𝑐 𝑓 (𝑝) for any belief 𝑝 ⩾ �̌�𝐸 , since contradictory 𝐵-learning is the expert’s
optimal learning strategy under complete delegation for these beliefs.

From Lemma 3, we know that �̌�𝐸 ⩽ 𝑝∗𝐸 , which implies that 𝑉 ∗
0
(

𝑝∗𝐸
)

> 𝑉 𝐸
𝑐 𝑓

(

𝑝∗𝐸
)

. For any belief 𝑝 < 𝑝∗𝐸 both 𝑉 𝐸
𝑐 𝑓 (𝑝) and 𝑉 ∗

0 (𝑝)
have identical learning policies with 𝛼 = 0. Since the confirmatory strategy at 𝑝∗𝐸 has a continuation utility that is dominated by
the contradictory 𝐵-learning, 𝑉 ∗

0 (𝑝) ⩾ 𝑉 𝐸
𝑐 𝑓 (𝑝) for 𝑝 < 𝑝∗𝐸 , which concludes the proof. □

Lemma 7 implies that if, under flexible delegation, at some 𝑝, the principal finds allowing the expert to pursue B-learning optimal,
she also finds it optimal to allow B-learning at all higher beliefs at which the autonomous expert optimally learns.

To state the result, recall that 𝑈𝑏(𝑝) is the value the principal derives from immediate decision 𝑏 and is given in (2). The value
hat the principal derives from B-learning is the solution to the principal’s equivalent of the HJB equation (A.7). When boundary

condition is 𝑈0(𝑞) = 𝑣, the solution is well-defined for 𝑞 ∈ (0, 1) and is given by the principal’s equivalent of (A.8):

𝑈0(𝑝; 𝑞 , 𝑣) = 1
1 + 𝑟

(

(1 − 𝑝)𝑢𝐵𝑏 +
𝑝
𝑞

(

(1 − 𝑞)𝑝
(1 − 𝑝)𝑞

)𝑟
((1 + 𝑟)𝑣 − (1 − 𝑞)𝑢𝐵𝑏 )

)

. (A.46)

Lemma 7. There exists a threshold 𝛥 < 1 such that for all 𝛥 ≤ 𝛥, equation
𝑈𝑏(𝑝) = 𝑈0(𝑝; �̄�∗𝐸 , 𝑈𝑎(�̄�∗𝐸 )) (A.47)

has a unique solution 𝑝𝑖𝑛𝑑 ∈
[

0, �̄�∗𝐸] and for all 𝛥 > 𝛥, Eq. (A.47) has no solution in [

0, �̄�∗𝐸]. When it exists, the solution 𝑝𝑖𝑛𝑑 is increasing
n 𝛥.

Proof. The second derivative of 𝑈0(𝑝; 𝑞 , 𝑣) with respect to 𝑝 is
𝜕2𝑈0

𝜕 𝑝2 = 𝑟
(1 − 𝑝)2𝑝𝑞

(

(1 − 𝑞)𝑝
(1 − 𝑝)𝑞

)𝑟
(

(1 + 𝑟)𝑣 − (1 − 𝑞)𝑢𝐵𝑏
)

. (A.48)

The sign of this derivative depends on the sign of the bracket
(

(1 + 𝑟)𝑣 − (1 − 𝑞)𝑢𝐵𝑏
)

, which does not depend on 𝑝. Hence the function
is either globally convex or globally concave in 𝑝. In either case, the linear function 𝑈𝑏(𝑝) can cross 𝑈0(𝑝, �̄�∗𝐸 , 𝑈𝑎(�̄�∗𝐸 )) at most twice.

At 𝑝 = 0,

𝑈𝑏(0) = 1 + 𝛥 > 1 + 𝛥
1 + 𝑟

= 𝑈0(0; �̄�∗𝐸 , 𝑈𝑎(�̄�∗𝐸 )) (A.49)

At 𝑝 = �̄�∗𝐸 ,

𝑈𝑏(�̄�∗𝐸 ) = �̄�∗𝐸𝑢𝐴𝑏 + (1 − �̄�∗𝐸 )𝑢𝐵𝑏 =
(3 + 4𝑟 − 𝛥)𝛥 − 2

2 + 2𝑟 − 𝛥
(A.50)

and

𝑈0(�̄�∗𝐸 ; �̄�∗𝐸 , 𝑈𝑎(�̄�∗𝐸 )) = 𝑈𝑎(�̄�∗𝐸 ) = �̄�∗𝐸𝑢𝐴𝑎 + (1 − �̄�∗𝐸 )𝑢𝐵𝑎 = 2 − 𝛥 − 2𝑟𝛥
2 + 2𝑟 − 𝛥

. (A.51)

Hence, from (A.50) and (A.51) it follows that 𝑈𝑏(�̄�∗𝐸 ) ≤ 𝑈0(�̄�∗𝐸 ; �̄�∗𝐸 , 𝑈𝑎(�̄�∗𝐸 )) iff

𝛥2 − (4 + 6𝑟)𝛥 + 4 ≥ 0. (A.52)

Equation 𝛥2 − (4 + 6𝑟)𝛥 + 4 = 0 has two solutions for 𝛥 but only one in [0, 1]:

𝛥 = 2 + 3𝑟 −
√

3𝑟(4 + 3𝑟). (A.53)

Consequently, on
[

0, �̄�∗𝐸], 𝑈𝑏(𝑝) crosses 𝑈0(𝑝; �̄�∗𝐸 , 𝑈𝑎(�̄�∗𝐸 )) once and from above when 𝛥 ≤ 𝛥 and 𝑈𝑏(𝑝) either crosses 𝑈0(𝑝; �̄�∗𝐸 , 𝑈𝑎(�̄�∗𝐸 )
twice or not at all when 𝛥 > 𝛥.

By the implicit function theorem,
𝜕
𝜕 𝛥𝑝𝑖𝑛𝑑 = − 𝜕 𝑈𝑏∕𝜕 𝛥 − 𝜕 𝑈0∕𝜕 𝛥

𝜕 𝑈𝑏∕𝜕 𝑝 − 𝜕 𝑈0∕𝜕 𝑝
|

|

|

|𝑝=𝑝𝑖𝑛𝑑
(A.54)

Consider 𝑝 = 𝑝𝑖𝑛𝑑 at which 𝑈𝑏(𝑝) crosses 𝑈0(𝑝; �̄�∗𝐸 , 𝑈𝑎(�̄�∗𝐸 )) from above. Then,
𝜕 𝑈𝑏
𝜕 𝑝 −

𝜕 𝑈0
𝜕 𝑝

|

|

|

|𝑝=𝑝𝑖𝑛𝑑
= − 𝑟(1 − 2𝑝𝑖𝑛𝑑 + 𝛥)

𝑝𝑖𝑛𝑑 (1 − 𝑝𝑖𝑛𝑑 )
< 0, (A.55)

and the sign of the derivative (A.54) is the same as the sign of
𝜕 𝑈𝑏
𝜕 𝛥 −

𝜕 𝑈0
𝜕 𝛥

|

|

|

|𝑝=𝑝𝑖𝑛𝑑
= 1

1 + 𝑟

(

𝑟 + 𝑝 +
𝑝

�̄�∗𝐸

(

(1 − �̄�∗𝐸 )𝑝
(1 − 𝑝)�̄�∗𝐸

)𝑟

𝑤(𝑟, 𝛥)
)

, (A.56)

where

𝑤(𝑟, 𝛥) ∶=
(

(1 + 𝑟)(2 + 𝑟)2
−

4 + 𝑟(5 + 2𝑟)
−

𝑟(1 + 𝑟)
− 𝑟

)

. (A.57)

2 + 𝑟(1 − 𝛥) − 𝛥 2 + 2𝑟 − 𝛥 1 + 𝛥
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The derivative (A.56) is positive if 𝑤(𝑟, 𝛥) is positive. The derivative
𝜕 𝑤
𝜕 𝛥 =

𝑟(1 + 𝑟)
(1 + 𝛥)2

−
4 + 𝑟(5 + 2𝑟)
(2 + 2𝑟 − 𝛥)2

+
(1 + 𝑟)2(2 + 𝑟)2

(2 + 𝑟(1 − 𝛥) − 𝛥)2
(A.58)

is equal to 0 at 𝑟 = 0 and is increasing in 𝑟. Indeed, the first term 𝑟(1 + 𝑟)∕(1 + 𝛥)2 is increasing in 𝑟 by inspection. The second term
is also increasing in 𝑟:

𝜕
𝜕 𝑟

(

−
4 + 𝑟(5 + 2𝑟)
(2 + 2𝑟 − 𝛥)2

)

=
6 + 5𝛥 + 𝑟(2 + 4𝛥)

(2 + 2𝑟 − 𝛥)3
> 0. (A.59)

The derivative of the third term
𝜕
𝜕 𝑟

(

(1 + 𝑟)2(2 + 𝑟)2

(2 + 𝑟(1 − 𝛥) − 𝛥)2

)

=
2(1 + 𝑟)(2 + 𝑟)3 − 2(1 + 𝑟)3(2 + 𝑟)𝛥

(2 + 𝑟(1 − 𝛥) − 𝛥)3
(A.60)

is also positive because it decreases with 𝛥 and is 2(1 + 𝑟)(2 + 𝑟)(3 + 2𝑟) > 0 at 𝛥 = 1. Hence, 𝑤(𝑟, 𝛥) is increasing in 𝛥 for all 𝑟 > 0.
At 𝛥 = 0, 𝑤(𝑟, 𝛥) = 𝑟∕(2 + 2𝑟) > 0 and so 𝑤(𝑟, 𝛥) > 0 for all 𝑟 > 1 and 0 ≤ 𝛥 ≤ 1. Hence, 𝜕 𝑝𝑖𝑛𝑑∕𝜕 𝛥 > 0 and so, when 𝛥 > 𝛥, 𝑈𝑏(𝑝) does
not cross 𝑈0(𝑝; �̄�∗𝐸 , 𝑈𝑎(�̄�∗𝐸 )) on

[

0, �̄�∗𝐸]. □

Lemma 7 is the key step in the proof of Theorem 1. Lemma 7 implies that, when 𝛥 is sufficiently small, there exists a unique
hreshold 𝑝𝑖𝑛𝑑 such that for 𝑝 < 𝑝𝑖𝑛𝑑 , the principal prefers the immediate decision 𝑏 to letting the expert learn from source 𝐵 until
topping at �̄�∗𝐸 and taking action 𝑎 upon stopping. Furthermore, when 𝛥 is sufficiently large, the principal prefers the immediate
ction 𝑏 to expert’s optimal B-learning at any 𝑝 ∈

[

0, �̄�∗𝐸].

Proof of the theorem
The proof proceeds in three steps. First, it is argued that any principal’s intervention at 𝑝 ≥ �̌�𝐸 does not change the experts

learning strategy compared to the optimal strategy of an autonomous expert. Second, it is argued that any intervention at 𝑝 < �̌�𝐸
akes the principal worse off. In the final step, it is argued that there exists a unique threshold 𝛥∗ such that under flexible delegation,

he principal intervenes at 𝑝 < �̌�𝐸 if and only if 𝛥 < 𝛥∗.
STEP 1: By Lemma 7, if min

{

𝑝𝑖𝑛𝑑 , �̄�∗𝐸
}

≥ �̌�𝐸 , at �̌�𝐸 the principal prefers action 𝑏 to expert’s optimal B-learning. Consequently,
under flexible delegation, the principal optimally intervenes to terminate expert’s B-learning at beliefs 𝑝 > �̌�𝐸 . Because under B-
learning in the absence of signal, belief moves towards higher 𝑝, the principal’s intervention at some low 𝑝 ∈

(

�̌�𝐸 ,min
{

𝑝𝑖𝑛𝑑 , �̄�∗𝐸
})

does not change expert’s B-learning continuation strategy at any higher belief compared to his strategy under complete delegation.
Hence, the intervention does not change the principal’s continuation payoff relative to her continuation payoff under complete
delegation.

STEP 2: If 𝑝𝑖𝑛𝑑 < �̌�𝐸 , the principal intervenes at beliefs 𝑞 ∈ (𝑝∗𝐸 , �̌�𝐸 ) at which the autonomous expert would have pursued A-
earning. When the principal terminates A-learning at some belief 𝑞 ∈ (𝑝∗𝐸 , �̌�𝐸 ) and takes action 𝑏, the expert’s value from A-learning

is 𝑉1(𝑝; 𝑞 , 𝑉𝑏(𝑞)), where 𝑉1 is defined in (A.4) and 𝑉𝑏 is defined in (2).
For 𝑞(𝑝∗𝐸 , �̌�𝐸 ), 𝑉1(𝑝; 𝑞 , 𝑉𝑏(𝑞)) is bounded above by 𝑉1(𝑝; 𝑝∗𝐸 , 𝑉𝑏(𝑝∗𝐸 )) = 𝑉 ∗

1 (𝑝), where 𝑉 ∗
1 (𝑝) is defined in (A.6), because, by

construction, 𝑉 ∗
1 (𝑝) is the value the expert derives from the optimally terminated A-learning. Since by Lemma 4, 𝑉 ∗

1 (𝑝) crosses
𝑉 ∗
0 (𝑝) only once and from above, 𝑉1(𝑝; 𝑞 , 𝑉𝑏(𝑞)) cannot cross 𝑉 ∗

0 (𝑝) at 𝑝 > �̌�𝐸 ; it either crosses 𝑉 ∗
0 (𝑝) at some 𝑝 ∈ [𝑞 , �̌�𝐸 ) or not at all.

onsequently, the expert switches to information source 𝐴 at a lower belief 𝑝 than under complete delegation, if at all. Switching
o A-learning at a lower belief 𝑝 < �̌�𝐸 makes the principal worse off because by Lemma 2, at �̌�𝐸 the principal prefers A-learning.

STEP 3: There exists a unique threshold 𝛥∗ such that inequality 𝑝𝑖𝑛𝑑 < �̌�𝐸 holds for all 0 ≤ 𝛥 < 𝛥∗ and does not hold otherwise.
Indeed, 𝑝𝑖𝑛𝑑 is implicitly defined as a solution to 𝑈𝑏(𝑝) = 𝑈0(𝑝; �̄�∗𝐸 , 𝑈𝑎(�̄�∗𝐸 )), and by Lemma 7, 𝜕 𝑝𝑖𝑛𝑑∕𝜕 𝛥 > 0; threshold �̌�𝐸 is implicitly
efined as a solution to 𝑉 ∗

1 (𝑝) = 𝑉 ∗
0 (𝑝) and by Lemma 2, 𝜕 ̌𝑝𝐸∕𝜕 𝛥 < 0. When 𝛥 = 0, the principal and the expert derive the same value

rom learning and so 𝑝𝑖𝑛𝑑 < �̌�𝐸 by construction of the optimal learning policy. When 𝛥 = 𝛥, 𝑝𝑖𝑛𝑑 > �̌�𝐸 because 𝑝∗𝐸 = �̄�∗𝐸 < 𝑝∗𝑃 = �̄�∗𝑃

and the principal derives no value from expert’s learning. Then, monotonicity of the derivatives 𝜕 𝑝𝑖𝑛𝑑∕𝜕 𝛥 > 0 and 𝜕 ̌𝑝𝐸∕𝜕 𝛥 < 0 implies
that there exists a unique 0 ≤ 𝛥∗ ≤ 𝛥 that solves 𝑝𝑖𝑛𝑑 = �̌�𝐸 .
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