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Abstract: Despite a remarkable reduction in global poverty and famines, substantial childhood
malnutrition continues to persist. In 2017, over 50 million and 150 million young children suf-
fered from acute malnutrition (wasting) and chronic malnutrition (stunting), respectively. Yet, the
measurable impact of determinants is obscure. We evaluate proposed socio-environmental related
determinants of stunting and wasting across Kenya and Nigeria and quantify their effectiveness. We
combine health and demographic data from Kenya and Nigeria Demographic Health Surveys (2003,
2008–2009, 2013, 2014) with spatially explicit precipitation, temperature, and vegetation data. Geospa-
tial and disaggregated data help to understand better who is at risk and where to target mitigation
efforts. We evaluate the responsiveness of malnutrition indicators using a four-level random intercept
hierarchical generalized logit model. We find that spatial and hierarchical relationships explain 28%
to 36% of malnutrition outcome variation. Temporal variation in precipitation, temperature, and
vegetation corresponds with more than a 50% change in malnutrition rates. Wasting is most impacted
by mother’s education, family wealth, clinical delivery, and vaccinations. Stunting is most impacted
by family wealth, mother’s education, clinical delivery, vaccinations, and children asymptomatic of
fever, cough, or diarrhea. Remotely monitored climatic variables are powerful determinants, however,
their effects are inconsistent across different indicators and locations.
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1. Introduction

Childhood malnutrition is a pernicious public health issue. It is a detrimental and
significant plight responsible for 45% of all deaths among children worldwide [1]. Malnu-
trition not only increases child morbidity and mortality, it also inhibits cognitive, social,
and financial potential [2,3]. Ongoing progress to reduce malnutrition has so far been
insufficient to attain the World Health Assembly targets for 2025 and the Sustainable Devel-
opment Goals for 2030 (i.e., a 40% reduction in stunting prevalence and reduce wasting
prevalence to less than 5% by 2025, and by 2030 end all forms of malnutrition) [4,5]. Despite
downward global trends, only 26 of 202 countries are on track to meet the undernutrition
target [6,7].

Causes of child malnutrition are broadly divided into two etiological categories:
illness-related or non-illness-related [8]. The focus of this paper is to evaluate the latent
determinants that impact the severity and variability of non-illness-related childhood
malnutrition. Non-illness-related malnutrition stems from economic, social, environmental,
political, or cultural factors that decrease nutrient intake and negatively affect growth
and development [9]. Malnutrition severity is measured by deterioration in various key
anthropometric indicators.
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Two of the most widely studied indicators are wasting and stunting. Wasting indicates
a deficit in tissue and fat mass, either from weight loss or inability to gain weight. A child,
aged 0 to 59 months, is defined as wasted if their weight-for-height is below negative two
standard deviations from the median of the WHO Child Growth Standards [10]. Stunting
indicates impeded skeletal growth. It is a measure of linear growth, representing chronic
malnutrition accumulated over time. A child, aged 0 to 59 months, is defined as stunted
if their height-for-age is below negative two standard deviations from the median of the
World Health Organization Child Growth Standards [10].

Since the introduction of the 1990 UNICEF conceptual framework, it has been the
standard for modeling the broad causes of child malnutrition. Driven in part by de-
mand from governmental and non-profit aid agencies to successfully carry out their
missions, there has been an upsurge in studies attempting to corroborate the UNICEF
framework with empirical evidence and adapt it to fit new paradigms [4,10–31]. Empirical
evidence for non-illness-related childhood malnutrition determinants and policy interven-
tions spans micronutrient supplementation [32], various sociodemographics [33–35], and
climactic factors [36]. Other conceptualizations focus on different factors such as food
security [37–42], risk factors [1,8,32,43–49], national economic growth [50,51], spatial
composition [52–54], and utility maximization [55,56], all disseminating from a wider
historical epistemology.

The UNICEF conceptual framework models child malnutrition as a hierarchical system to
motivate the drivers of malnutrition [57]. The hierarchical strata include immediate, underlying,
and basic classifications. Some specifications equate these strata to individual, household,
and societal levels, whereby factors at one level influence other levels [29], while other
specifications focus on distinguishing between proximal and distal determinants [58,59].

For example, in their report on the aggregate cross-county determinants of malnu-
trition, Smith and Haddad [2] identify specific subcategories of the UNICEF framework.
They specify dietary intake and health status as the immediate determinants, which are
influenced by the underlying determinants of food security (per capita national food avail-
ability), care for mothers and children (women’s education and women’s status relative to
men’s), and health environment quality (safe water access), which are in turn influenced by
the basic determinants of economic resource availabilities (per capita national income) and
the political environment (democracy score).

Despite long-observed environmental effects [60] and widely anticipated links be-
tween climate change and child malnutrition, evidence regarding the nature, severity, and
variability of this relationship is just beginning to emerge across spatial and temporal
scales [61]. Others have found that much of the evidence for the impact of climate on
childhood malnutrition is based on a few heterogeneous studies with flawed methodolo-
gies [36]. Indeed, there exists abundant opportunities in the literature for studies with wider
geographic coverage and greater attention to scale. Such studies should include multiple
dimensions of nutrition outcomes and quantify the spatial, social, political, climatic, and
economic determinants of malnutrition.

Globally Nigeria has the second highest number of stunted children behind India.
There are over 4.8 million wasted children and over 10 million stunted children in Nigeria.
And Kenya provides a measure of external validity and contrast to this analysis, with
over 278 thousand wasted children and over 1.8 million stunted children [10]. Including
both countries adds variability in terms of malnutrition prevalence rates, governance,
climate, population, economy, and culture. Kenya and Nigeria both have available health
survey data with extensive temporal and spatial coverage that overlaps with the avail-
able geolocated historical climate data. Despite similar efforts in the literature in both
Kenya [39,62–64] and Nigeria [11,12,65–68], this paper aims to be the first study to identify
and quantify the non-illness-related and climatic determinants of stunting and wasting
across Kenya and Nigeria through a spatially explicit hierarchical modeling approach
consistent with the UNICEF [29,69] conceptual framework.
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2. Materials and Methods
2.1. Health Survey Study Design

The Demographic and Health Surveys (DHS) remain the most ubiquitous resource of
its kind, with more than 350 surveys in over 90 countries across 30 years [70]. To supply the
primary data on child health and household characteristics, we employ the Demographic
and Health Surveys (DHS) Kids Recode files and the Geographic Data files for Kenya and
Nigeria of DHS-IV (1997 to 2003), DHS-V (2003 to 2008), DHS-VI (2008 to 2013). The sample
includes 48,086 Nigerian children and 28,421 Kenyan children.

The sampling procedure is a multistage probability sample design, drawn from the
sampling frame of the most recent census. Regions, zones, or provinces stratify national
populations, and states or counties stratify regions. The final stratum contains a subpopula-
tion from which clusters are randomly sampled. The extent of clusters vary; they can be a
city block or apartment building in urban areas whilst being a village or group of villages
in rural areas. Generally, geographic regions and urban or rural areas within each region
partition the stratified samples of the Demographic and Health Surveys [71].

For example, the sampling frame for Nigeria partitions the country into 6 geographical
regions, 36 states and the Federal Capital Territory, 774 local government areas, 8812
wards, and 665,000 census enumeration areas, each containing 48 households on average.
The sample design for Nigeria DHS-VI selected 893 wards with a selection probability
proportional to its population and stratified across urban and rural local government areas
in each state. The sample design then selects 904 census enumeration areas from within
the 893 wards and if a selected enumeration area contains less than 80 households, a
neighboring enumeration area is added to form the primary sampling units or clusters.
Finally, the sample design selects a fixed number of 45 households from each cluster to
determine who to interview.

The probability of selecting a household is the probability of selecting the cluster
multiplied by the probability of selecting the household within the cluster. Kenya DHS
clusters all have 25 households whereas Nigeria DHS-VI clusters have 45 households;
Nigeria DHS-V clusters have 41 households; and Nigeria DHS-IV clusters have 22 house-
holds on average. The number of clusters do not remain constant across time and space.
Kenya DHS-V and DHS-IV have 400 clusters, whereas Kenya DHS-VI has 1612 clusters and
Nigeria DHS-IV has 365 clusters; Nigeria DHS-V has 888 clusters; and Nigeria DHS-VI has
904 clusters. The stratified samples produce homogeneity within groups and heterogeneity
between groups.

2.2. Data Measures

We employ data from three of four main questionnaires of the Demographic and
Health Surveys. The Household Questionnaire characterizes the household in terms
of physical amenities and a roster of the members of the household. The Biomarker
Questionnaire characterizes the anthropometric measurements and biochemical indicators
of eligible members of the household. The Woman’s Questionnaire contains a birth history
roster of detailed health and nutrition statistics for select eligible children, in addition to
characteristics about the woman. The birth history forms the basis for the Kids Recode file,
a standardized module of information related to the child’s pregnancy and postnatal care
and immunization, health and nutrition data [72]. The recode file is a standardized file that
facilitates cross-country analysis.

We calculate anthropometric measurements, including weight (tenths of a kilogram)
and height (tenths of a centimeter) from the Kids Recode files. We construct the z-sores of
anthropometric indices using Stata Statistical Software 15.1 [73,74]. We input the weight
and height measurements along with the sex and child’s age to calculate z-scores following
the 2006 World Health Organization growth standards [10]. The Nigerian sample includes
7361 (15.3% prevalence) wasted and 18,723 (38.9% prevalence) stunted children. The Kenyan
sample includes 1775 (6.3% prevalence) wasted and 8396 (29.5% prevalence) stunted children.
The dependent variables, wasting and stunting, are child-level composite binary indicators
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equal to one if the child’s calculated z-score is below negative two standard deviations
from the reference median and zero otherwise.

Unique identifiers link the georeferenced data to records in the household surveys
at the cluster level. However, the Demographic and Health Surveys employ geographic-
masking with a coordinate displacement process to protect respondent confidentiality. The
process displaces urban clusters up to two kilometers, displaces rural clusters up to five
kilometers, and randomly selects one percent of the rural clusters to displace up to ten
kilometers [71]. We link the Kids Recode files via timestamps and the cluster-level spatial
identifiers to remotely monitored climatic variables (for more on variable composition, see
Appendix A).

The Climate Hazards InfraRed Precipitation with Stations (CHIRPS) precipitation
data product [75] and the Climate Hazards InfraRed Temperature with Stations (CHIRTS)
temperature data product [76] provide interpolated high spatial resolution and coverage
estimates of climatological activity between 1983 and 2016 inclusively. These products are
used to estimate average total monthly rainfall, average total growing season rainfall, aver-
age maximum monthly temperature, and average maximum growing season temperature.
And the normalized difference vegetation index (NDVI) is a continuous unitless greenness
index of growing season abundance [77].

Selected covariates follow the UNICEF [29] conceptual framework along with spatially
explicit temperature, precipitation, NDVI, and anomaly climatic inputs [75–77]. The em-
phasis of the model is on accommodating many possible determinants of malnutrition and
prioritizing the most important within a specific contextual application while being easy to
communicate across different users. Tables 1–3 report the summary statistics of discrete
variables, continuous variables, and the hierarchical decomposition of DHS, respectively.

Table 1. Summary statistics of discrete variables.

Nigeria Kenya

Variable Frequency Percent Frequency Percent

Wasting Status
Not wasted 40,716 84.69 26,646 93.75
Wasted 7360 15.31 1775 6.25

Stunting Status
Not stunted 29,353 61.06 20,025 70.46
Stunted 18,723 38.94 8396 29.54

Sex
Male 23,991 49.90 14,369 50.56
Female 24,085 50.10 14,052 49.44

Delivery
Home 29,850 62.38 14,069 49.63
Clinic 18,002 37.62 14,277 50.37

Birth
Multiple 1428 2.97 734 2.58
Singleton 46,648 97.03 27,687 97.42

Weaned
Breastfed beyond 1 year 16,809 34.96 7158 25.19
Weaned by 1 year 19,645 40.86 14,896 52.41
Breastfed up to 1 year 11,038 22.96 4170 14.67
Weaned before 1 year 584 1.21 2197 7.73

Vaccines—Minimum
No 12,181 25.36 1341 4.72
Yes 35,850 74.64 27,073 95.28

Vaccines—Maximum
No 40,684 84.70 16,965 59.71
Yes 7347 15.30 11,449 40.29

Diet
Unvaried 35,622 74.10 22,723 79.95
Diverse 12,454 25.90 5698 20.05
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Table 1. Cont.

Nigeria Kenya

Variable Frequency Percent Frequency Percent

Sick
Symptomatic 12,709 26.66 14,226 50.14
Asymptomatic 34,957 73.34 14,149 49.86

Latrine—Improved
No 32,967 70.96 22,184 82.36
Yes 13,489 29.04 4751 17.64

Water—Improved
No 22,082 47.07 11,540 41.37
Yes 24,833 52.93 16,355 58.63

Residence
Urban 15,680 32.62 8179 28.78
Rural 32,396 67.38 20,242 71.22

Mother’s Education
None 21,919 45.59 5992 21.08
Primary 10,898 22.67 15,521 54.61
Secondary 12,471 25.94 5280 18.58
Higher 2788 5.80 1628 5.73

Wealth Index
Poorest 10,697 22.25 9077 31.94
Poorer 10,813 22.49 5784 20.35
Middle 9678 20.13 4856 17.09
Richer 9035 18.79 4333 15.25
Richest 7853 16.33 4371 15.38

Interview Month
January 0 0.00 1530 5.38
February 1370 2.85 1265 4.45
March 7315 15.22 25 0.09
April 8166 16.99 729 2.57
May 8709 18.12 4042 14.22
June 3932 8.18 4718 16.60
July 6327 13.16 4828 16.99
August 5698 11.85 4035 14.20
September 4043 8.41 4163 14.65
October 2485 5.17 805 2.83
November 31 0.06 1145 4.03
December 0 0.00 1136 4.00

Survey Phase
DHS-IV 4386 9.12 4718 16.60
DHS-V 19,246 40.02 5101 17.95
DHS-VI 24,454 50.85 18,602 65.45

Table 2. Summary statistics of continuous variables.

Nigeria Kenya

Standard Standard
Variable Average Deviation Min Max Average Deviation Min Max

Child’s Age (Months) 28.3 17.2 0 59 28.9 17 0 59
Mother’s Age (Years) 29.5 6.93 15 49 28.6 6.57 15 49
Birth Tally 4.3 2.58 1 18 3.8 2.36 1 16
Precipitation (dm) 21.3 7.95 4.7 61.6 8.3 6.13 0.02 25.2
Temperature (◦C) 31 2.23 24 38.3 26.4 3.7 15.6 35.6
Precipitation Anomaly 0.2 2.62 −11.3 11.4 −0.5 1.47 −5.5 8.2
Temperature Anomaly −0.7 0.46 −1.9 0.7 −0.8 0.45 −2.6 0.9
NDVI 0.6 0.14 0.09 0.9 0.6 0.14 0.1 0.9
NDVI Anomaly 0.0 0.026 −0.1 0.2 0.0 0.034 −0.1 0.2
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Table 3. Hierarchical decomposition of DHS.

Nigeria Kenya

Observations per Group Observations per Group

Scale Groups Min Average Max Groups Min Average Max

State 37 765 1299.1 2750 47 339 600.9 1165
Cluster 2131 1 22.6 79 2365 1 11.9 43

Household 30,904 1 1.6 8 20,048 1 1.4 6
Child 48,068 28,241

2.3. Statistical Analysis

Hierarchical models respect the heterogeneity of social experience and provides appro-
priate generalization to account for differences across groups [78]. Each child, household,
cluster, and state has its own distinctive variation and characteristics. Hierarchical model-
ing attenuates the risk of both ecological and atomistic fallacies by considering all levels
simultaneously [79].

Within a hierarchical modeling structure, we specify and measure the variability
associated with different units of observation levels—-child, household, cluster, and state—
-to match the Demographic and Health Surveys data structure. We assume each level is a
pure hierarchical set, such that all clusters are contained within one and only one state, all
households are contained within one and only one cluster, and all children are contained
within one and only one household (for more on model specification, see Appendix B).

Variables at each level explain the measurement variability and its effect on malnu-
trition. Effects may also vary randomly among the units at higher levels (i.e., cross-level
variability). For example, the magnitude of the effect of a child’s gender on their probability
of being wasted may depend on cluster level characteristics, such as easy access to an
improved toilet. Random variability may also exist at the household, cluster, or state
scale—-implying random intercepts. Explicit formulation of a hierarchical model with
effects at, within, and between levels ameliorates these issues of conceptualization [80].

Inherently, child malnutrition is an individual and household-level phenomenon, yet
it is at the country (and subnational) levels that many policy decisions are made. Using
average data can be misleading if distribution is important and differs across countries
and conclusions from cross-national data may not be applicable to individual countries’
situations [2]. Our approach addresses the interdependency explicitly. We preserve the
units-of-analysis across levels in a combined structure and estimate random effects for each
organizational unit. The standard error estimates incorporate the variability of the random
effects and adjust for intraclass correlation [80].

Aggregation bias may occur when a variable has a different meaning, and thus a
different effect, at different hierarchical levels. For example, the average quality of water
and sanitation in a cluster may have an effect on a child’s health above and beyond the
effect of an individual child’s water and sanitation circumstances at home. Our approach
alleviates confounding effects by partitioning the effect of water and sanitation quality on
health into separate components.

Misestimating precision may occur in standard error estimates if a model fails to
account for dependence among individual responses within a group. Once the grouping
has been established, even if it is established at random, the group itself will tend to become
differentiated [81]. The group and its members can both influence and be influenced by the
composition of the group [82]. Continuing from the previous example, the survey design
may have selected the survey clusters at random yet the composition of children within a
cluster is likely interdependent. An individual child’s water and sanitation circumstance is
reliant on the available infrastructure and cultural conventions of that child’s community
and so, too, is the child living next door, but far less so is the child living five states away.

We use the full assemblage of data across each organizational level to provide sep-
arate predicted probabilities for each category of interest. The estimators are weighted
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composites from the category of interest and the overall sample. Within group units are
more similar than between group units and across levels, which mimics the first law of geogra-
phy—everything is related to everything else, but near things are more related than distant
things [83]. Children within the same household tend to be more similar to each other than
those in other households, similarly for households within clusters, and clusters within
states, and even for children within clusters, and households within states. This clustering
occurs through some mechanism interconnected to unit characteristics: siblings do not end
up in the same household by random chance. Generalization of classical regression meth-
ods with hierarchical methods is almost always an improvement in terms of fit, prediction
and inference [84]. All results and conclusions are drawn from a four-level random intercept
hierarchical generalized logit model specification.

3. Results

Figure 1 shows that the prevalence rates of wasting and stunting are overall spatially
correlated, although there are pockets where rates deviate substantially suggesting different
causal pathways [85]. The variable heterogeneity of malnutrition prevalence over the
landscape highlights the need for a disaggregate and spatially explicit modeling approach
(for more detailed spatial distributions of uncertainty estimates, see Appendix C). The
Demographic and Health Surveys data form a natural hierarchical structure: regions
within a country, states within a region, clusters within a state, households within a cluster,
occupants within a household, and children for each woman.

The results across the various modeling approaches tell a consistent story, imply-
ing the results are robust to particular modeling variations. Our results as summarized
in Table 4 indicate that the hierarchical structure alone explains 28 to 36 percent of the
variation in malnutrition, meaning the additional model complexity has consequential
explanatory value.

Table 4. Unconditional hierarchical model—variance decomposition.

Wasted Stunted
Hierarchical Fully

Unconditional Nigeria Kenya Nigeria Kenya

Variance Decomposition—Percent by Level
States 7.09% 11.35% 10.94% 1.87%

Clusters 9.48% 6.35% 6.99% 6.11%
Households 17.50% 20.09% 13.31% 20.08%

Children 65.93% 62.22% 68.77% 71.94%

Figure 2 visualizes the results of the discrete covariates. It illustrates how much
each categorical determinant affects malnutrition for a change from a baseline counterfac-
tual. Generally, the effect sizes for stunting are larger than for wasting due to the smaller
prevalence of wasting in the population. Because the model results measure the direct
impact on the percentage point difference in probability of malnutrition in the population
(i.e., prevalence), the size of the marginal effects have an upper-bound limit of the preva-
lence in the population. In other words, only already wasted and stunted children can
transition to being non-wasted and non-stunted.
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Figure 2. Average marginal effects of categorical determinants of malnutrition (based on Tables 5 and 6).
Variables are displayed such that negative values are beneficial for children’s health and positive
values are deleterious for children’s health. The vertical red line at zero marks the liminal threshold,
whereas the green and orange horizontal lines are 95% confidence intervals.
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Table 5. Interpreted hierarchical analyses, wasted percentage point change.

Interpreted Results Percent Change in Wasted Probability
Hierarchical Random Intercept Nigeria Kenya

For a Change from Baseline Category with 95% Confidence Interval in Brackets
Sex—Female −1.2% [−1.9, −0.49] −0.75% [−1.1, −0.36]
Delivery—Clinic −0.91% [−1.7, −0.11] −1% [−1.6, −0.46]
Birth—Singleton −4.1% [−6.7, −1.4] −3.2% [−5.5, −1]
Weaned—By 1 Year Old −0.44% [−1.2, 0.34] −0.11% [−0.48, 0.26]
Vaccines—Minimum −1% [−2, −0.03] −0.44% [−1.4, 0.52]
Vaccines—Maximum −1% [−2, 0] −0.27% [−0.85, 0.32]
Diet—Diverse 0.77% [−0.1, 1.6] −0.32% [−0.9, 0.25]
Sick—Asymptomatic −1% [−1.8, −0.25] −0.16% [−0.58, 0.26]
Latrine—Improved −0.31% [−1, 0.38] 0.45% [−0.38, 1.3]
Water—Improved −0.26% [−1.2, 0.66] −0.02% [−0.41, 0.37]
Residence—Rural −0.86% [−2.2, 0.47] −0.03% [−0.51, 0.46]
Mothers Education

Primary −0.96% [−1.8, −0.12] −1.1% [−1.7, −0.56]
Secondary −2% [−2.8, −1.1] −0.89% [−1.6, −0.18]
Higher −4% [−5.4, −2.7] −1.7% [−2.6, −0.89]

Wealth Index
Poorer −0.06% [−0.92, 0.8] −0.92% [−1.6, −0.22]
Middle −1.3% [−2.2, −0.45] −0.79% [−1.5, −0.04]
Richer −1.6% [−2.8, −0.42] −1.1% [−1.8, −0.3]
Richest −0.95% [−2.5, 0.63] −1.2% [−2.3, −0.17]

For a 1-Unit Increase in Determinant with 95% Confidence Interval in Brackets
Child’s Age −2.2% [−2.8, −1.5] −0.13% [−0.38, 0.12]
Mother’s Age 0.26% [−0.64, 1.2] −0.22% [−0.65, 0.2]
Birth Tally −0.17% [−0.39, 0.05] 0.07% [−0.07, 0.21]
Precipitation −0.96% [−2.3, 0.41] −1.5% [−2.5, −0.63]
Temperature 1.2% [0.79, 1.5] 0.24% [0.12, 0.36]
Precipitation Anomaly −0.45% [−4.9, 4] 1.1% [−0.88, 3.1]
Temperature Anomaly −2.7% [−5.2, −0.26] −0.01% [−0.62, 0.61]
NDVI −9.2% [−14, −4.9] −3.9% [−6.6, −1.3]
NDVI Anomaly 4.4% [−14, 23] 5.5% [−2.1, 13]
For a 1-Standard Deviation Increase in Determinant with 95% Confidence Interval in Brackets
Child’s Age −3.15% [−4.01, −2.15] −0.18% [−0.54, 0.17]
Mother’s Age 0.18% [−0.44, 0.83] −0.14% [−0.43, 0.13]
Birth Tally −0.44% [−1.01, 0.14] 0.16% [−0.17, 0.5]
Precipitation −0.76% [−1.83, 0.33] −0.92% [−1.53, −0.39]
Temperature 2.68% [1.76, 3.35] 0.89% [0.44, 1.33]
Precipitation Anomaly −0.12% [−1.28, 1.05] 0.16% [−0.13, 0.46]
Temperature Anomaly −1.24% [−2.39, −0.12] 0% [−0.28, 0.27]
NDVI −1.29% [−1.96, −0.69] −0.55% [−0.92, −0.18]
NDVI Anomaly 0.11% [−0.36, 0.6] 0.19% [−0.07, 0.44]
For a Sample Maximum Increase in Determinant with 95% Confidence Interval in Brackets
Child’s Age −10.82% [−13.77, −7.38] −0.64% [−1.87, 0.59]
Mother’s Age 0.88% [−2.18, 4.08] −0.75% [−2.21, 0.68]
Birth Tally −2.89% [−6.63, 0.92] 1.04% [−1.08, 3.15]
Precipitation −5.46% [−13.09, 2.33] −3.78% [−6.3, −1.59]
Temperature 17.16% [11.3, 21.45] 4.8% [2.4, 7.2]
Precipitation Anomaly −1.02% [−11.12, 9.08] 1.51% [−1.21, 4.25]
Temperature Anomaly −7.02% [−13.52, −0.68] −0.02% [−2.17, 2.14]
NDVI −7.45% [−11.34, −3.97] −3.12% [−5.28, −1.04]
NDVI Anomaly 1.32% [−4.2, 6.9] 1.65% [−0.63, 3.9]
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Table 6. Interpreted Hierarchical Analyses, Stunted Percentage Point Change.

Interpreted Results Percent Change in Stunted Probability
Hierarchical Random Intercept Nigeria Kenya

For a Change from Baseline Category with 95% Confidence Interval in Brackets
Sex—Female −5.1% [−5.9, −4.2] −7.7% [−9.1, −6.3]
Delivery—Clinic −2.2% [−3.3, −1.1] −4.6% [−6.4, −2.8]
Birth—Singleton −13% [−17, −9.1] −23% [−28, −18]
Weaned—By 1 Year Old −0.31% [−1.6, 1] −1.1% [−2.8, 0.65]
Vaccines—Minimum −0.56% [−2.8, 1.7] −2.9% [−5.5, −0.2]
Vaccines—Maximum −4% [−6, −1.9] −1.6% [−3.1, −0.22]
Diet—Diverse −2% [−3.6, −0.37] −0.51% [−2.3, 1.3]
Sick—Asymptomatic −3.4% [−5, −1.8] −1.3% [−2.6, −0.07]
Latrine—Improved −0.43% [−2, 1.1] −5% [−7.2, −2.8]
Water—Improved 0.2% [−1.1, 1.5] −1.1% [−2.7, 0.51]
Residence—Rural 1.5% [0.01, 2.9] −1.4% [−3.6, 0.8]
Mothers Education

Primary −1.5% [−3, −0.01] 2.5% [−0.5, 5.6]
Secondary −5.4% [−7.4, −3.4] −2.5% [−5.7, 0.84]
Higher −13% [−16, −10] −5.9% [−10, −1.3]

Wealth Index
Poorer −2.9% [−4.7, −1.1] −4.3% [−6.7, −1.9]
Middle −6% [−8.2, −3.9] −8.1% [−11, −5.4]
Richer −12% [−15, −9.9] −10% [−13, −6.9]
Richest −16% [−18, −13] −16% [−19, −12]

For a 1-Unit Increase in Determinant with 95% Confidence Interval in Brackets
Child’s Age −0.75% [−1.7, 0.16] −2.6% [−3.3, −1.8]
Mother’s Age −3.6% [−4.7, −2.5] −4.6% [−6.1, −3.1]
Birth Tally 0.37% [0.06, 0.68] 1.1% [0.67, 1.6]
Precipitation −1.5% [−4.4, 1.4] 3.3% [0.33, 6.3]
Temperature −0.26% [−1.3, 0.73] −0.92% [−1.2, −0.61]
Precipitation Anomaly 5.2% [−1, 11] −3.4% [−8, 1.2]
Temperature Anomaly −1.8% [−5.8, 2.1] 1% [−0.43, 2.4]
NDVI −6.6% [−19, 6.1] 12% [5.7, 18]
NDVI Anomaly 30% [−20, 80] −13% [−36, 9.8]
For a 1-Standard Deviation Increase in Determinant with 95% Confidence Interval in Brackets
Child’s Age −1.08% [−2.44, 0.23] −3.68% [−4.68, −2.55]
Mother’s Age −2.49% [−3.26, −1.73] −3.02% [−4.01, −2.04]
Birth Tally 0.95% [0.16, 1.75] 2.6% [1.58, 3.78]
Precipitation −1.19% [−3.5, 1.11] 2.02% [0.2, 3.86]
Temperature −0.58% [−2.9, 1.63] −3.4% [−4.44, −2.26]
Precipitation Anomaly 1.36% [−0.26, 2.88] −0.5% [−1.18, 0.18]
Temperature Anomaly −0.83% [−2.67, 0.97] 0.45% [−0.19, 1.08]
NDVI −0.92% [−2.66, 0.85] 1.68% [0.8, 2.52]
NDVI Anomaly 0.78% [−0.52, 2.08] −0.44% [−1.22, 0.33]
For a Sample Maximum Increase in Determinant with 95% Confidence Interval in Brackets
Child’s Age −3.69% [−8.36, 0.79] −12.78% [−16.23, −8.85]
Mother’s Age −12.24% [−15.98, −8.5] −15.64% [−20.74, −10.54]
Birth Tally 6.29% [1.05, 11.56] 16.5% [10.05, 24]
Precipitation −8.54% [−25.04, 7.97] 8.31% [0.83, 15.86]
Temperature −3.72% [−18.59, 10.44] −18.4% [−24, −12.2]
Precipitation Anomaly 11.8% [−2.27, 24.97] −4.66% [−10.96, 1.64]
Temperature Anomaly −4.68% [−15.08, 5.46] 3.5% [−1.51, 8.4]
NDVI −5.35% [−15.39, 4.94] 9.6% [4.56, 14.4]
NDVI Anomaly 9% [−6, 24] −3.9% [−10.8, 2.94]

3.1. Social Determinants

Table 5 indicates that in both Nigeria and Kenya, the mother’s education plays a
greater role in determining wasting, whereas household wealth is the leading determinant
of stunting. On average, in Nigeria, the probability of being wasted is 4 percentage
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points (95% CI: −5.4 to −2.7) lower for a child from a mother with higher education than
from a mother with no education, whereas in Kenya, the probability of being wasted is
1.7 percentage points (95% CI: −2.6 to −0.89) lower for a child from a mother with higher
education than from a mother with no education. That is to say, the absolute prevalence
rates of wasting in Nigeria and Kenya would drop from 15.31% and 6.25%, respectively,
down to 11.31% and 4.55% if mothers of wasted children had higher education holding all
else constant. Table 6 confirms that education plays a vital role in stunting prevalence as
well. Mothers attaining higher education are associated with a reduction in stunting rates
by 13 percentage points (95% CI: −16 to −10) in Nigeria and 5.9 percentage points (95%
CI: −10 to −1.3) in Kenya. In other words, education alone has the potential to curtail the
number of stunted children by over one-third.

In terms of quantifying the results in numbers of children, and in numbers of deaths
prevented, the effects are highly epidemiologically significant. In 2011, the Nigeria under-
five population was 27,195,000 with a 41% stunting prevalence (11,149,950) and a 14%
wasting prevalence (3,807,300), with an overall mortality rate of 124/1000 for under-fives
(3,372,180). This rate is much lower for non-malnourished children making the estimated
projections of deaths prevented a conservative lower bound of the true value [10]. Us-
ing a maximally adjusted, minimum hazard ratio, of 2.12 for stunting mortality and 3.47
for wasting mortality, the mortality rate becomes 260/1000 at a minimum for stunted
children, and 430/1000 at a minimum for wasted children [86]. At a maximum edu-
cation is associated with a reduced stunting prevalence of 13 percentage points, or by
3,353,350 children, thus increasing education may prevent at a minimum 490,989 deaths.
Similarly, if at a maximum education is associated with a reduced wasting prevalence
of 4 percentage points, or by 1,087,800 children, increasing education may prevent at a
minimum 315,767 deaths.

In 2011, the Kenya under-five population was 6,805,000 with a 35% stunting preva-
lence (2,381,750) and a 7% wasting prevalence (476,350), with an overall mortality rate of
73/1000 for under-fives (496,765). This rate is much lower for non-malnourished children,
making the deaths prevented estimates conservative lower bounds of their true values [10].
Using a maximally adjusted minimum hazard ratio of 2.12 for stunting mortality and
3.47 for wasting mortality, the mortality rate becomes 150/1000 at a minimum for stunted
children and 250/1000 at a minimum for wasted children [86]. If, at a maximum, edu-
cation is associated with a reduced stunting prevalence of 5.9 percentage points, or by
401,495 children, then increasing education may prevent at a minimum 32,826 deaths.
Similarly, if, at a maximum, education is associated with a reduced wasting prevalence
of 1.7 percentage points, or by 115,685 children, increasing education may prevent at a
minimum 21,206 deaths.

Results in Tables 5 and 6 also confirm the powerful influence of wealth on malnutrition
rates. The richest families from the highest wealth quintile exhibit a reduced wasting
prevalence of 0.95 percentage points (95% CI: −2.5 to 0.63) in Nigeria and 1.2 percentage
points (95% CI: −2.3 to −0.17) in Kenya. Wealth is associated with a reduced stunting
prevalence of 16 percentage points (95% CI: −18 to −13 and −19 to −12) in both Nigeria
and Kenya. The second highest wealth quintile is associated with a reduced wasting
prevalence of 1.6 percentage points (95% CI: −2.8 to −0.42) in Nigeria and 1.1 percentage
points (95% CI: −1.8 to −0.3) in Kenya. Similarly it is associated with a reduced stunting
prevalence of 12 percentage points (95% CI: −15 to −9.9) in Nigeria and 10 percentage
points (95% CI: −13 to −6.9) in Kenya (Tables 5 and 6). Moving to the middle wealth
quintile is associated with a reduced wasting prevalence of 1.3 percentage points (95% CI:
−2.2 to −0.45) in Nigeria and 0.79 percentage points (95% CI: −1.5 to −0.04) in Kenya, and
a reduced stunting prevalence of 6 percentage points (95% CI: −8.2 to −3.9) in Nigeria and
8.1 percentage points (95% CI: −11 to −5.4) in Kenya (Tables 5 and 6). Even moving from the
poorest to second-poorest wealth quintile is associated with a reduced wasting prevalence
of 0.06 percentage points (95% CI: −0.92 to 0.8) in Nigeria and 0.92 percentage points (95%
CI: −1.6 to −0.22) in Kenya, and a reduced stunting prevalence of 2.9 percentage points
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(95% CI: −4.7 to −1.1) in Nigeria and 4.3 percentage points (95% CI: −6.7 to −1.9) in Kenya.
Overall, changes in wealth alone have a smaller but substantial impact on wasting with
reductions up to one fifth. Even more substantially, wealth alone has the potential to curtail
the number of stunted children by more than one half.

3.2. Environmental Determinants

The climate variables are a remote monitoring corollary to malnutrition. Climate vari-
ables have the potential to act as leading indicators for changes in malnutrition prevalence
with wide coverage and lower costs compared to traditional clinical survey techniques.
Malnutrition is often purported to be the most significant impact of climate change on
children’s health, but little empirical evidence exists in the literature [36,87,88]. For Nigeria
and Kenya, NDVI, precipitation, and temperature levels all play a significant, but not
homogeneous, role in determining wasting and stunting prevalence.

Figure 3 shows that the increased precipitation levels in the preceding growing season
may have an ameliorative effect. Precipitation levels in Kenya reaching an average 2.5 dm
during the growing season is associated with a 3% predicted prevalence of wasting: an over
50% percent reduction from the sample average, whereas a precipitation level of 6.0 dm
over the growing season in Nigeria is associated with a one in ten predicted prevalence
of wasting. Figure 4 presents the effect of temperature on average predicted probability
of malnutrition. In the case of Nigeria, it shows that higher temperatures correspond to
higher wasting prevalence. On average, a maximum monthly temperature of 38 ◦C in
the preceding growing season is associated with a 25% wasting prevalence. That is to say,
the higher temperature corresponds to a 10-percentage point higher wasting prevalence.
Under a forecasting regime, the results show that temperatures in Nigeria reaching an
average monthly maximum of 38 ◦C during the growing season is associated with one
in four children experiencing wasting the following year. Similarly, an average monthly
maximum temperature of 35 ◦C in Kenya during the growing season is associated with
one in ten children experiencing wasting the following: a nearly two-fold increase from the
observed prevalence.

NDVI in the preceding growing season is a further measure with a strong inverse
relationship to wasting rates. Figure 5 indicates that in both Nigeria and Kenya, moving
from the lowest to the highest values of observable NDVI is associated with a reduced
wasting rate of 50%.

While the absolute value or level plays the largest and most direct determining role in
malnutrition outcomes, the long-term variability or anomaly plays a substantial secondary
role, too. As presented in Tables 5 and 6, one standard deviation increase in precipitation
anomaly is associated with a reduced wasting prevalence of 0.12 percentage points (95%
CI: −1.28 to 1.05) in Nigeria and a reduced stunting prevalence of 0.5 percentage points
(95% CI: −1.18 to 0.18) in Kenya. Precipitation anomaly is associated with an increased
wasting prevalence of 0.16 percentage points (95% CI: −0.13 to 0.46) in Kenya and an
increased stunting prevalence of 1.36 percentage points (95% CI: −0.26 to 2.88) in Nigeria.
One standard deviation increase in temperature anomaly is associated with a reduced
wasting prevalence of 1.24 percentage points (95% CI: −2.39 to −0.12) in Nigeria and
has zero detectable effect (95% CI: −0.28 to 0.27) in Kenya. Temperature anomaly is
associated with a reduced stunting prevalence of 0.83 percentage points (95% CI: −2.67 to
0.97) in Nigeria, but an increased prevalence of 0.45 percentage points (95% CI: −0.19 to
1.08) in Kenya. One standard deviation increase in NDVI anomaly is associated with an
increased wasting prevalence of 0.11 percentage points (95% CI: −0.36 to 0.6) in Nigeria and
0.19 percentage points (95% CI: −0.07 to 0.44) in Kenya. NDVI anomaly is associated with
an increased stunting prevalence of 0.78 percentage points (95% CI: −0.52 to 2.08) in Nigeria,
but a decreased prevalence of 0.44 percentage points (95% CI: −1.22 to 0.33) in Kenya.
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Figure 3. Effect of precipitation on average predicted probability of malnutrition. The horizontal
axis is the in-sample range of average total monthly rainfall (dm) during the preceding growing
season. The horizontal red line demarks the observed malnutrition prevalence and the sloped blue
line illustrates how much the expected prevalence rates change as precipitation changes. The shaded
blue corresponds to a 95% confidence interval band on the estimate.

3.3. Goodness of Fit

To assess fit we calculate percent correctly classified, McIntosh–Dorfman criterion, and
McFadden’s pseudo-R-squared measurements (for specifics, see Appendix D). However, we
rely on a decision analysis approach to generate predicted probability cutoff values, which
we use to estimate the probability of underlying malnutrition. The decision curve analysis
estimates of the hierarchical model specification are on average 15.3% for Nigeria wasting;
4.5% for Kenya wasting; 38.7% for Nigeria stunting; and 31.1% for Kenya stunting. The
subsequent measures of sensitivity (true-positive rate) and specificity (true-negative rate)
under the maximized net benefit regime range from 77.2% at a minimum to a maximum of
95.3% with a value of 84.2% on average, indicating a good fit.
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Figure 4. Effect of temperature on average predicted probability of malnutrition. The horizontal
axis is the in-sample range of average maximum monthly temperatures (◦C) during the preceding
growing season. The horizontal red line demarks the observed malnutrition prevalence and the
sloped blue line illustrates how much the expected prevalence rates change as temperature changes.
The shaded blue corresponds to a 95% confidence interval band on the estimate.

3.4. Limitations

Using a standardized questionnaire model, the Demographic and Health Surveys Pro-
gram aims to collect data that are comparable across countries. However, the questionnaire
model has been modified across each of the seven phases of the Program making it difficult
to measure changes through time. Given our samples are stratified and relatively large,
sampling errors of excessive skepticism are low, but remain non-zero. Nor do we con-
sider the overall quality of the anthropometric data itself as an approximation of normally
distributed z-scores standard deviations [89].

In the survey design, individuals within households are not sampled, only clusters
are sampled, and then households are sampled within clusters. Given that the DHS
datasets do not provide a separate sampling fraction (i.e., weights) for clusters, households,
and individuals for privacy, weighting in a multilevel model is infeasible [90–92]. The
DHS geographic displacement process reduces the risk of disclosing confidential personal
information, but adds artificial uncertainty into the signal-to-noise ratio and lowers the
precision of estimated covariates.
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Figure 5. Effect of NDVI on average predicted probability of malnutrition. The horizontal axis is the
in-sample range of the unitless NDVI for the three greenest months during the preceding growing
season. The horizontal red line demarks the observed malnutrition prevalence and the sloped blue
line illustrates how much the expected prevalence rates change as NDVI changes. The shaded blue
corresponds to a 95% confidence interval band on the estimate.

Given the availability of DHS data release cycles coupled with the need to overlap with
the spatially explicit historical CHIRTS and CHIRPS climate data, the temporal window
for analysis is limited. And although the data have a temporal component, successive
surveys are repeated cross sections, not a panel. There remains a need for similar studies
that include more countries, across more surveys, across a broader timespan, examining
more outcomes with more inputs specifically directed at the nexus of climate, conflict,
and malnutrition.

Given the model specification complexity we did not control for potential misclassifica-
tion error in the outcome variable, which may cause attenuated coefficient estimates [93,94].
Exploratory analysis suggests the accuracy of the observed wasted children is as low as
37% (Nigeria) and 21% (Kenya). The accuracy of the observed stunted children is better,
78% (Nigeria) and 66% (Kenya). Other estimates for the overdispersion of height-for-age
z-scores suggest variance inflation factors as high as 110% [95].

Accompanying the model complexity is the opportunity to mis-specify the model. For
example, it does not make sense to include a district-level random slope for the variable
number of hospitals in a district as it does not vary within the district. However, low within-
cluster variance is not much of an issue at all as long as there are an adequate number of
clusters that do have sufficient data [96]. We performed specification robustness analyses,
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including linear probability specification and logit specifications (results available upon
request). Given the discrete nature of the dependent variables, wasting and stunting, we
use linear probability and logit models to motivate the initial coefficient interpretations and
provide a lower bound on effect sizes. Exploring multiple model specifications helps to
minimizes specification error and maximizes validity, and utilizing different populations
defends against confounding [97].

4. Discussion

Although wasting and stunting are related malnutrition indicators their causal path-
ways, prevalence, duration, impact, and determining factors are distinct. Across both
Nigeria and Kenya, stunting is most significantly impacted by family wealth, followed
by the mother’s education, a clinical delivery, vaccinations, and children who are asymp-
tomatic of fever, cough, or diarrhea. In Nigeria diet diversity manifests as a mitigating
stunting risk factor, whereas in Kenya access to improved latrine facilities and rural house-
holds mitigates stunting prevalence. Wasting is most significantly impacted by mother’s
education, followed by family wealth, a clinical delivery, and vaccinations across both
Nigeria and Kenya. And in Nigeria, children living in urban households and those children
exhibiting symptoms of fever, cough, or diarrhea are also at elevated wasting risk levels.

One likely cause of the discrepancy is the overall sample dispersion across the two
countries, coupled with the greater potential reduction for Nigeria to curb malnutrition
prevalence given its higher observed rates. For example, in Nigeria, mothers’ education
exhibits a more bimodal distribution, where over 45% of mothers have no formal education
and over 30% have secondary or higher, whereas in Kenya, there is a more clumped
distribution centered around primary education, which accounts for over 54% of the
sample. Given these two very different distributions, the model results suggest that in
a more divided society with a high prevalence of malnutrition, having greater access to
education will afford proportionally greater gains in beneficial public health outcomes.

Climatic variables are powerful determinants of malnutrition. Across the observable
range of values, changes in precipitation, temperature, or NDVI (in the preceding growing
season) alone could curtail or inflate the number of wasted and stunted children by more
than one half. However, their effects can vary greatly across different nutrition indicators
and different countries (congruent with previous efforts elsewhere) [42,98]. Due to the
distinct causal pathways and chronic nature of stunting, the signal-to-noise ratio of climate
determinants is markedly diminished. In Kenya, higher precipitation and NDVI levels
were deleterious and significant determinants, while higher temperature levels were a
mitigating and significant determinant. Yet, in Nigeria higher temperature, precipitation,
and NDVI levels were mitigating determinants.

Surprisingly, some oft-purported determinants of malnutrition were not significant in
either the statistical or epidemiological sense. These include climate anomalies, access to
improved latrine facilities, access to improved water facilities, weaning practices, and diet
diversity for wasting. Similarly, for stunting, improved water facilities and weaning are
not significant. Further research is needed to ameliorate these discrepancies. In particular,
agencies and organizations such as the Famine Early Warning Systems Network, Action
Against Hunger, the International Food Policy Research Institute, the World Bank, the World
Food Program, UNICEF, the World Health Organization, and many others rely accurate
and precise information to inform their models, forecasts, and resource deployment.

One segment of the public health community has decided that certain determinants are
a public health boon. Therefore, these determinants must be drastically buoyed. The force
with which these conclusions are presented is not in reasonable balance with the strength
of the evidence. Programs, once in place develop a life of their own; the possibility of
health benefits becomes probability, which becomes certainty. The appearance of scientific
unanimity is a powerful political tool, especially when the evidence is mixed. Dissent
becomes a threat, which must be marginalized. If funding agencies and journals are
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unwilling to brook opposition, rational discussion is curtailed. There soon comes about the
pretense of policy based on scientific inquiry—without the substance.

In the clinical setting of public health and epidemiology, a diagnostic application helps
to estimate the probability that malnutrition is present, identifying the nature or cause
of the malnutrition; whereas a prognostic application helps to predict how malnutrition
will develop and target preventive interventions to children at relatively high risk [99].
Diagnostics can be described as the probability of malnutrition conditional on a set of latent
determinants, whereas prognostics can be thought of as the obverse or the probability of
future outcomes conditional on being malnourished.

Estimated effects from latent determinants provide the diagnostic insights, whereas
harm versus benefit establishes the prognostic framework. The purpose of a prognostic
model is that better decisions are made with the model than without. Within the prognostic
framework reliability of predictions is key. It is our aim to estimate the probability of mal-
nutrition in a diagnostic sense, and to help target preventive interventions in a prognostic
sense. Understanding how the distinctiveness of location effects malnutrition provides
even more clarity.

5. Conclusions

Malnutrition devastates millions of children every year, yet the latent determinants
are largely obscure. One is best informed by examining determinants on the basis of
quantitative and epidemiological significance. A determinant’s impact is best measured by
its ability to change malnutrition prevalence in an epidemiologically significant way. We
find the most impactful latent determinants each have the capacity to reduce prevalence
rates by as much as 50%: an epidemiologically significant effect.

The inconsistencies of determinants across space and malnutrition outcomes highlight
the need for prudent, highly specific, and tailored approaches, especially when using
climate determinants for any forecasting efforts or policy interventions [100,101]. Particular
focus should be paid to those determinants that are either actionable by policy intervention
or serviceable in forecasting and intervention efforts as well as epidemiologically significant.
Identifying effective mitigating determinants to prevent the harmful effects of malnutrition
in children should be a priority. Only with explicit identification and measurement can
intervention organizations and governments begin to make substantial progress to reduce
childhood malnutrition.
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Appendix A. Variable Composition

Appendix A.1. Child-Level

The sex variable is an unadulterated binary indicator equal to one if the child is female
and zero if male. The delivery variable is a collapsed binary indicator equal to one if delivery
occurred in a hospital facility or health clinic and zero otherwise. The birth variable is a
collapsed binary indicator equal to one if the delivery was a singleton birth and zero if
delivery involved multiple births (i.e., twins). The weaned variable is a composite categorical
indicator equal to one if the child is weaned by 1 year, two if the child is breastfed up to 1
year, three if the child is weaned before 1 year, and zero if the child is breastfed beyond 1
year. The vaccines—minimum variable is a composite binary indicator equal to one if the
child received at least 1 of 9 vaccinations (Polio 0, 1, 2, 3; DPT 1, 2, 3; BCG, and Measles)
and zero otherwise. The vaccines—maximum variable is a composite binary indicator equal
to one if the child received all nine vaccinations and zero otherwise. The diet variable is
a composite binary indicator equal to one if the child received a diverse variety of 4 or
more food groups (of seven possible, including grains, legumes, dairy, meat or fish, eggs,
fruits and vegetables high in vitamin A, and other fruits and vegetables) in the past 24 h,
or three or more food groups plus breast milk, and zero otherwise. The sick variable is a
composite binary indicator equal to one if the child is asymptomatic (i.e., did not present
with diarrhea, a fever, or a cough in the past 2 weeks) and zero otherwise. The child’s age
variable is an unadulterated continuous indicator of the child’s age in months, from date of
birth to date of interview.

Appendix A.2. Household-Level

The latrine variable is a composite binary indicator equal to one if the facility is
“improved”, meaning it is not shared and the type of toilet facility for the household
is a flush toilet (either to a sewer system, septic tank, pit, or anywhere else); ventilated
improved pit latrine or pit latrine with slab; or a composting toilet and zero otherwise
if the facility is shared or an open pit; no facility, brush or field; bucket toilet; hanging
toilet; or anywhere else. The water variable is a collapsed binary indicator equal to one if
it is “improved”, meaning the major source of drinking water for the household is piped
water into the dwelling, yard, or plot; a public tap, standpipe, or borehole; a protected well
or protected spring water; rainwater; or bottled water and zero otherwise from sources
including unprotected wells or springs, water delivered by tanker trucks, or surface water.
The mother’s education variable is an unadulterated standardized categorical indicator of
highest education level attended equal to zero if no education, one if primary, two if
secondary, and three if higher. The wealth index variable is an unadulterated composite
categorical indicator of a household’s cumulative standard of living, calculated using
ownership of assets (e.g., televisions and bicycles); housing construction materials; types
of water and latrine facilities, and generated by placing all interviewed households along
a continuous scale of relative wealth and then separating them into five wealth quintiles:
poorest, poorer, middle, richer, and richest. The mother’s age variable is an unadulterated
continuous indicator of the mother’s current age in completed years of decades, from
date of birth to date of interview. The birth tally variable is an unadulterated continuous
indicator of the total number of births of the mother.

Appendix A.3. Cluster-Level

The residence variable is an unadulterated binary indicator equal to one if the de facto
place of residence is rural (based on whether the cluster is defined as rural in the sample
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design—-a country-specific designation) and zero if defined as urban. The precipitation
variable is a composite continuous measure of average total monthly rainfall in decimeters
during the preceding growing season derived from the Climate Hazards Group InfraRed
Precipitation with Station (CHIRPS) dataset replete with a 0.05◦ spatial resolution [75]. The
temperature variable is a composite continuous measure of average maximum monthly
temperature in Celsius during the preceding growing season derived from the Climate
Hazards Group InfraRed Temperature with Station (CHIRTS) dataset replete with a 0.05◦

spatial resolution [75]. The precipitation anomaly variable is a composite continuous measure
of average monthly rainfall anomaly from the previous five-year average in decimeters
during the preceding growing season. The temperature anomaly variable is a composite
continuous measure of average maximum monthly temperature anomaly from the previous
five-year average in Celsius during the preceding growing season. The greenness index
variable is a composite continuous unit-less index measure between zero and one of the
normalized difference vegetation index (NDVI) for the three greenest months during the
preceding growing season replete with a 0.05◦ spatial resolution [77].

Appendix A.4. State-Level and Other Controls

State-level indicators are First-level Administrative Divisions and include 47 counties
for Kenya and 36 states plus one federal capital territory for Nigeria. The interview month
variable is an unadulterated categorical control indicator of the month in which the survey
took place. The survey phase variable is an unadulterated categorical control indicator of the
phase in which the survey took place (DHS-IV from 1997 to 2003; DHS-V from 2003 to 2008;
and DHS-VI from 2008 to 2013) [90–92].

Appendix B. Hierarchical Specification

The unconditional, intercept-only model assumes random-effects coefficients have
a mean of zero and determines the variance components. The variance decomposition
shows both the within- and between-group variability for the proportion of the variance of
the outcome. This procedure provides evidence to justify the application of a hierarchical
model.

Child-level:
Yijkl = β0jkl + eijkl

Yijkl : anthropometric indicator (e.g., wasting or stunting) of child i, in household j, in
cluster k, in state l.

β0jkl : mean indicator of household j, in cluster k, in state l.
eijkl : random child effect, deviation of child ijkl’s indicator from household jkl’s mean;

∼ N
(
0, σ2).

Household-level:
β0jkl = θ00kl + r0jkl

θ00kl : mean indicator of cluster k, in state l.
r0jkl : random household effect, deviation of household jkl’s indicator mean from

cluster kl’s mean; ∼ N
(
0, τβ

)
Cluster-level:

θ00kl = η000l + v00kl

η000l : mean indicator of state l.
v00kl : random cluster effect, deviation of cluster kl’s indicator mean from state l’s

mean; ∼ N(0, τθ).
State-level:

η000l = γ0000 + u000l

γ0000: grand indicator mean.
u000l : random state effect, deviation of state l’s indicator mean from grand mean;

∼ N
(
0, τη

)
.
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The subscripts i, j, k, and l denote children, households, clusters, and states where,
i = 1, 2, . . . , Njkl children within household j, in cluster k, in state l;
j = 1, 2, . . . , Jkl households, within cluster k, in state l;
k = 1, 2, . . . , Kl clusters, within state l; and
l = 1, 2, . . . , L states.
The complementary mixed model for the unconditional, intercept-only model is

given by,
Yijkl = γ0000 + u000l + v00kl + r0jkl + eijkl .

The unconditional, intercept-only specification estimates the grand mean, γ0000 too,
and provides information about the outcome variability at each level. The proportion of
variance in the outcome variable explained by the grouping structure of the hierarchical
model is given by

Var
(
Yij

)
= Var

(
u000l + v00kl + r0jkl + eijkl

)
= τη + τθ + τβ + σ2.

Total variability in outcome Yijkl is partitioned across each level: level 1, σ2 among
children within households; level 2, τβ among households within clusters; level 3, τθ among
clusters within states; and level 4, τη among sates. The proportion of variation attributed to
each level is given by

Level 1:
σ2

τη + τθ + τβ + σ2

Level 2:
τβ

τη + τθ + τβ + σ2

Level 3:
τθ

τη + τθ + τβ + σ2

Level 4:
τη

τη + τθ + τβ + σ2

The intraclass correlation coefficient or the cluster effect is denoted by the coefficient
rho. For the four-level fully unconditional hierarchical model, the intraclass correlation
coefficients are given by

Level 2:
ρ2 =

τη + τθ + τβ

τη + τθ + τβ + σ2

Level 3:
ρ3 =

τη + τθ

τη + τθ + τβ + σ2

Level 4:
ρ4 =

τη

τη + τθ + τβ + σ2

The level-1 intraclass correlation is undefined, and by definition, ρ2 ≥ ρ3 ≥ ρ4.
The second-order specification for the four-level hierarchical model permits random

intercepts, which account for the unique effects of each household, cluster, and state on the
anthropometric indicator outcome variable.

Child-level:

Yijkl = β0jkl +
P

∑
p=1

βpjklX.1pijkl + eijkl

Yijkl : anthropometric indicator of child i, in household j, in cluster k, in state l.
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β0jkl : child-level intercept for household j, in cluster k, in state l, which varies between
children according to the household-level specification.

βpjkl : child-level fixed effects coefficients for each child-level characteristic X.1pijkl .
X.1pijkl : p = 1, . . . P child-level characteristics.
eijkl : random child effect, deviation of child ijkl’s indicator from the predicted indicator;

∼ N
(
0, σ2).

Household-level:

β0jkl = θ00kl +
Q

∑
q=1

θ0qklX.2qjkl + r0jkl

βpjkl = θp0kl ∀ p

θ00kl : household-level intercept for cluster k, in state l, which varies between house-
holds according to the cluster-level specification.

θ0qkl : household-level fixed effects coefficients for each household-level characteristic
X.2qjkl .

θp0kl : equivalent child-level fixed effects in household-level notation.
X.2qjkl : q = 1, . . . , Q household-level characteristics.
r0jkl : random household effect, deviation of household jkl’s indicator from the pre-

dicted indicator; ∼ N
(
0, τβ

)
.

Cluster-level:

θ00kl = η000l +
R

∑
r=1

η00rlX.3rkl + v00kl

θ0qkl = η0q0l ∀ q

θp0kl = ηp00l ∀ p

η000l : cluster-level intercept for state l, which varies between clusters according to the
state-level specification.

η00rl : cluster-level fixed effects coefficients for each cluster-level characteristic X.3rkl .
η0q0l : equivalent household-level fixed effects in cluster-level notation.
ηp00l : equivalent child-level fixed effects in cluster-level notation.
X.3rkl : r = 1, . . . , R cluster-level characteristics.
v00kl : random cluster effect, deviation of cluster kl’s indicator from the predicted

indicator; ∼ N(0, τθ).
State-level:

η000l = γ0000 +
S

∑
s=1

γ000sX.4sl + u000l

η00rl = γ00r0 ∀ r

η0q0l = γ0q00 ∀ q

ηp00l = γp000 ∀ p

γ0000: grand intercept.
γ000s: state-level fixed-effects coefficients for each state-level characteristic X.4sl .
γ00r0: equivalent cluster-level fixed effects in state-level notation.
γ0q00: equivalent household-level fixed effects in state-level notation.
γp000: equivalent child-level fixed effects in state-level notation.
X.4sl : s = 1, . . . S state-level characteristics.
u000l : random state effect, deviation of state l’s indicator from the predicted indicator;

∼ N
(
0, τη

)
.

The mixed model is given by
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Yijkl = γ0000 +
P
∑

p=1
γp000X.1pijkl +

Q
∑

q=1
γ0q00X.2qjkl +

R
∑

r=1
γ00r0X.3rkl

+
S
∑

s=1
γ000sX.4sl + u000l + v00kl + r0jkl + eijkl

where it is easier to parse the model composition in terms of γ representing the fixed effects
and u000l , v00kl , r0jkl , and eijkl representing the random effects.

Appendix C. Spatial Dispersions
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Appendix D. Full Model Results

Table A1. Hierarchical results: wasted.

Wasted
Hierarchical Random Intercept Nigeria Kenya

Average Marginal Effects with 95% Confidence Interval in Brackets
Sex—Female −0.012 *** [−0.019, −0.0049] −0.0075 *** [−0.011, −0.0036]
Delivery—Clinic −0.0091 ** [−0.017, −0.0011] −0.010 *** [−0.016, −0.0046]
Birth—Singleton −0.041 *** [−0.067, −0.014] −0.032 *** [−0.055, −0.010]
Weaned—By 1 Year Old −0.0044 [−0.012, 0.0034] −0.0011 [−0.0048, 0.0026]
Vaccines—Minimum −0.010 ** [−0.020, −0.00032] −0.0044 [−0.014, 0.0052]
Vaccines—Maximum −0.010 * [−0.020, 0.000018] −0.0027 [−0.0085, 0.0032]
Diet—Diverse 0.0077 * [−0.00096, 0.016] −0.0032 [−0.0090, 0.0025]
Sick—Asymptomatic −0.010 *** [−0.018, −0.0025] −0.0016 [−0.0058, 0.0026]
Latrine—Improved −0.0031 [−0.010, 0.0038] 0.0045 [−0.0038, 0.013]
Water—Improved −0.0026 [−0.012, 0.0066] −0.00021 [−0.0041, 0.0037]
Residence—Rural −0.0086 [−0.022, 0.0047] −0.00029 [−0.0051, 0.0046]
Mother’s Education

Primary −0.0096 ** [−0.018, −0.0012] −0.011 *** [−0.017, −0.0056]
Secondary −0.020 *** [−0.028, −0.011] −0.0089 ** [−0.016, −0.0018]
Higher −0.040 *** [−0.054, −0.027] −0.017 *** [−0.026, −0.0089]

Wealth Index
Poorer −0.00059 [−0.0092, 0.0080] −0.0092 *** [−0.016, −0.0022]
Middle −0.013 *** [−0.022, −0.0045] −0.0079 ** [−0.015, −0.00044]
Richer −0.016 *** [−0.028, −0.0042] −0.011 *** [−0.018, −0.0030]
Richest −0.0095 [−0.025, 0.0063] −0.012 ** [−0.023, −0.0017]

Child’s Age −0.022 *** [−0.028, −0.015] −0.0013 [−0.0038, 0.0012]
Mother’s Age 0.0026 [−0.0064, 0.012] −0.0022 [−0.0065, 0.0020]
Birth Tally −0.0017 [−0.0039, 0.00054] 0.00069 [−0.00072, 0.0021]
NDVI −0.092 *** [−0.14, −0.049] −0.039 *** [−0.066, −0.013]
NDVI Anomaly 0.044 [−0.14, 0.23] 0.055 [−0.021, 0.13]
Precipitation −0.0096 [−0.023, 0.0041] −0.015 *** [−0.025, −0.0063]
Precipitation Anomaly −0.0045 [−0.049, 0.040] 0.011 [−0.0088, 0.031]
Temperature 0.012 *** [0.0079, 0.015] 0.0024 *** [0.0012, 0.0036]
Temperature Anomaly −0.027 ** [−0.052, −0.0026] −0.000052 [−0.0062, 0.0061]
Fixed Effect—Month and Phase Yes Yes
Number of Observations 44,717 26,130
Log Pseudo Likelihood −17,439.97 −5572.63
Predicted Outcome Analysis Standard Max Net Benefit Standard Max Net Benefit
McIntosh–Dorfman Criterion 1.17 1.71 1.02 1.73
Percent Correctly Classified 86.88 85.76 93.78 79.93
Sensitivity 17.92 85.48 1.52 94.36
Specificity 99.55 85.81 100.00 78.96
Net Benefit 0.027 0.111 0.001 0.046
Cut-Off Value 0.5 0.158 0.5 0.045

* p < 0.10, ** p < 0.05, *** p < 0.01.

Table A2. ICC and variance decomposition: wasted.

Wasted
Hierarchical Random Intercept Nigeria Kenya

Random Effect—Variance Component with 95% Confidence Interval in Brackets
States 0.3 [0.18, 0.41] 0.37 [0.18, 0.57]
Clusters 0.47 [0.31, 0.62] 0.14 [0.025, 0.25]
Households 1.17 [0.86, 1.47] 1.19 [0.70, 1.67]
Intraclass Correlation—Coefficients with 95% Confidence Interval in Brackets
States 0.057 [0.039, 0.081] 0.075 [0.044, 0.124]
Clusters 0.146 [0.114, 0.186] 0.103 [0.07, 0.149]
Households 0.370 [0.318, 0.425] 0.340 [0.277, 0.41]
Variance Decomposition—Percent by Level
States 5.66% 7.50%
Clusters 8.96% 2.77%
Households 22.34% 23.76%
Children 63.04% 65.96%



Nutrients 2024, 16, 2014 25 of 29

Table A3. Hierarchical results: stunted.

Stunted
Hierarchical Random Intercept Nigeria Kenya

Average Marginal Effects with 95% Confidence Interval in Brackets
Sex—Female −0.051 *** [−0.059, −0.042] −0.077 *** [−0.091, −0.063]
Delivery—Clinic −0.022 *** [−0.033, −0.011] −0.046 *** [−0.064, −0.028]
Birth—Singleton −0.13 *** [−0.17, −0.091] −0.23 *** [−0.28, −0.18]
Weaned—By 1 Year Old −0.0031 [−0.016, 0.0100] −0.011 [−0.028, 0.0065]
Vaccines—Minimum −0.0056 [−0.028, 0.017] −0.029 ** [−0.055, −0.0020]
Vaccines—Maximum −0.040 *** [−0.060, −0.019] −0.016 ** [−0.031, −0.0022]
Diet—Diverse −0.020 ** [−0.036, −0.0037] −0.0051 [−0.023, 0.013]
Sick—Asymptomatic −0.034 *** [−0.050, −0.018] −0.013 ** [−0.026, −0.00072]
Latrine—Improved −0.0043 [−0.020, 0.011] −0.050 *** [−0.072, −0.028]
Water—Improved 0.0020 [−0.011, 0.015] −0.011 [−0.027, 0.0051]
Residence—Rural 0.015 ** [0.000097, 0.029] −0.014 [−0.036, 0.0080]
Mother’s Education

Primary −0.015 ** [−0.030, −0.000055] 0.025 [−0.0050, 0.056]
Secondary −0.054 *** [−0.074, −0.034] −0.025 [−0.057, 0.0084]
Higher −0.13 *** [−0.16, −0.10] −0.059 ** [−0.10, −0.013]

Wealth Index
Poorer −0.029 *** [−0.047, −0.011] −0.043 *** [−0.067, −0.019]
Middle −0.060 *** [−0.082, −0.039] −0.081 *** [−0.11, −0.054]
Richer −0.12 *** [−0.15, −0.099] −0.10 *** [−0.13, −0.069]
Richest −0.16 *** [−0.18, −0.13] −0.16 *** [−0.19, −0.12]

Child’s Age −0.0075 [−0.017, 0.0016] −0.026 *** [−0.033, −0.018]
Mother’s Age −0.036 *** [−0.047, −0.025] −0.046 *** [−0.061, −0.031]
Birth Tally 0.0037 ** [0.00062, 0.0068] 0.011 *** [0.0067, 0.016]
NDVI −0.066 [−0.19, 0.061] 0.12 *** [0.057, 0.18]
NDVI Anomaly 0.30 [−0.20, 0.80] −0.13 [−0.36, 0.098]
Precipitation −0.015 [−0.044, 0.014] 0.033 ** [0.0033, 0.063]
Precipitation Anomaly 0.052 [−0.010, 0.11] −0.034 [−0.080, 0.012]
Temperature −0.0026 [−0.013, 0.0073] −0.0092 *** [−0.012, −0.0061]
Temperature Anomaly −0.018 [−0.058, 0.021] 0.010 [−0.0043, 0.024]
Fixed Effect—Month and Phase Yes Yes
Number of Observations 44,717 26,130
Log Pseudo-Likelihood −26,250.40 −14,400.96
Predicted Outcome Analysis Standard Max Net Benefit Standard Max Net Benefit
McIntosh–Dorfman Criterion 1.56 1.60 1.43 1.70
Percent Correctly Classified 80.28 79.20 82.49 85.92
Sensitivity 66.34 82.32 44.31 82.56
Specificity 89.24 77.20 98.29 87.31
Net Benefit 0.217 0.233 0.125 0.205
Cut-Off Value 0.5 0.383 0.5 0.317

** p < 0.05, *** p < 0.01.

Table A4. ICC and variance decomposition: stunted.

Stunted
Hierarchical Random Intercept Nigeria Kenya

Random Effect—Variance Component with 95% Confidence Interval in Brackets
States 0.26 [0.16, 0.35] 0.099 [0.048, 0.15]
Clusters 0.22 [0.17, 0.26] 0.13 [0.071, 0.20]
Households 0.81 [0.69, 0.93] 1.16 [0.89, 1.43]
Intraclass Correlation—Coefficients with 95% Confidence Interval in Brackets
States 0.056 [0.039, 0.08] 0.021 [0.013, 0.035]
Clusters 0.103 [0.083, 0.127] 0.050 [0.037, 0.068]
Households 0.281 [0.257, 0.306] 0.297 [0.257, 0.341]
Variance Decomposition—Percent by Level
States 5.58% 2.12%
Clusters 4.74% 2.87%
Households 17.74% 24.71%
Children 5.58% 2.12%
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