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Abstract: Carbon neutrality is urgent as rapidly emerging economies aggravate their share of global
energy demand. In China, the energy structure is dominated by fossil fuels, but it varies significantly
across provinces. As an indicator of carbon neutrality, previous studies of decoupling between
carbon dioxide emissions and economic growth focused at the national and sector levels in China.
However, they overlook the role of industrial structure in decoupling at the provincial level. In this
light, the following paper focuses on Qinghai Province, analyzing decoupling and its influencing
factors for achieving carbon neutrality from an industrial structure perspective over 1990–2021. It
uses the Tapio decoupling model to evaluate decoupling states and the Logarithmic Mean Divisia
Index decomposition to evaluate the influencing factors. A Data Envelopment Analysis model of
super-efficiency Slacks-Based Measure is used to evaluate the decarbonization efficiency. The study
finds that the overall trend shifted from weak to strong decoupling. Strong decoupling dominated
the primary industry while weak decoupling dominated the secondary and tertiary industries.
Economic growth negatively impacted overall decoupling, while population had a marginal effect.
Energy structure and intensity generally promoted decoupling. Additionally, the overall mean
efficiency of decarbonization was 0.95, led by the tertiary industry. The paper concludes by discussing
policy implications.

Keywords: carbon neutrality; sustainable development; decoupling; economic growth; carbon
emissions; industrial structure

1. Introduction

Achieving carbon neutrality is vital for mitigating climate change. Carbon neutrality
refers to balancing carbon dioxide emissions with their offset, aiming for a net zero impact.
There has been a rise in research on the nexus between energy and sustainable development
in support of the Paris Agreement to achieve carbon neutrality [1]. As a key player in this
field, China has achieved unprecedented success in some of the Sustainable Development
Goals (SDGs). It is shifting towards green growth by transforming its production and
consumption practices [2,3]. A critical aspect of this transformation is the decoupling of
economic growth from carbon emissions. This decoupling has become an urgent priority
in the global race towards net zero by 2050 as countries set emission targets [4]. It has
been widely used as a global, national, and regional policy goal and indicator of carbon
neutrality [3]. A stronger decoupling signifies the likelihood of achieving carbon neutrality.

Decoupling is a prerequisite for achieving carbon neutrality. This is particularly so
as emerging economies contribute significantly to global energy demand [5,6]. Affluent
countries are seeing more absolute decoupling while developing countries are making progress
toward relative decoupling [5,7,8]. The drivers of decoupling, such as clean technology,
structural change, and economic growth patterns, are well recognized [5,8–11]. However, the
sustainability and extent of decoupling efforts, particularly in affluent countries, remain
areas of ongoing research. For instance, affluent countries have made notable advances in
decoupling, but their consumption-based emissions continue to be a concern [12,13]. As
absolute decoupling is not yet occurring at a global and regional scale [14,15], more research
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is needed. Stringent and coordinated policies of sustainable production and consumption
must be explored at a large scale and speed for carbon neutrality.

China, the world’s largest greenhouse gas emitter, plays a crucial role in global decar-
bonization. The country has been making progress in decoupling its economic growth from
carbon emissions [16]. However, its energy structure, heavily reliant on fossil fuels, requires
urgent optimization to mitigate climate risks [17,18]. China’s decoupling has been driven by a
range of policy interventions, including research and development (R&D), structural change,
energy intensity, energy structure, and investment in clean technology [11,17,19–23].

While economy-wide decoupling at the national level has been researched extensively,
there is less of an understanding of decoupling from an industrial structure perspective at
the provincial level. Some provinces have more low-carbon energy sources than others. The
heterogeneous emission trajectories of provinces make it a formidable task to determine
whether China will meet its 2030 emissions peak and 2060 carbon neutrality [24]. Some
provinces have already peaked emissions [25], offering valuable insights into the potentially
effective policies for attaining absolute decoupling and carbon neutrality. In this light, this
study will address the dynamics and understanding of achieving carbon neutrality through
decoupling. It will focus on Qinghai, a northwestern province on the Qinghai-Tibet Plateau
(QTP) in China, that had peaked carbon emissions in 2016.

The QTP, with its distinct trajectory of natural capital and economic growth, plays a
significant role in the sustainable development and carbon neutrality goals. This region,
known as China’s ecological barrier, features the greatest tectonic landform and climate-
sensitive glaciers. It has substantial potential for renewable energy sources like solar,
wind, and hydropower. In recent years, national and provincial governments have made
headway in safeguarding the delicate plateau resources and fostering renewable energy as
pathways toward sustainable development. Particularly, Qinghai has laid the groundwork
for sustainable development by establishing pilot industrial parks for renewable energy,
a circular economy, green organic agriculture, and a destination for ecotourism. Local
governments promote these green industries as though the region is destined to become a
major sustainable development hub.

While the development of renewable energy is the leading factor in reducing global
fossil fuels [15], Qinghai’s approach to sustainable development and its contribution to-
ward carbon neutrality may provide potential lessons that can be learned globally. Notably,
carbon emissions in Qinghai peaked and began declining in 2016, despite national in-
creases [26,27]. Several states of decoupling have been achieved due to a service-oriented
economy, energy efficiency, energy structure, and low-carbon industries [28–30]. How-
ever, its potential for carbon neutrality through decoupling and driving factors remains
underexplored. A systematic literature on decoupling and rising low-carbon industries in
Qinghai is lacking. The region’s sensitive plateau ecosystem, susceptible to climate change,
underscores the need for further research to identify the drivers and barriers in achieving
strong and absolute decoupling towards carbon neutrality.

In this light, this study analyzes carbon neutrality through the trends and influencing
factors of decoupling between economic growth and energy-related carbon emissions from
an industrial structure perspective in Qinghai over 1990–2021. The design of this research
is predicated on the urgency of achieving carbon neutrality in the context of China’s fast
economic growth and its substantial reliance on fossil fuels for energy. Targeting a gap
in decoupling literature on the QTP, the study chose Qinghai for its unique economic
and ecological characteristics. It analyzes Qinghai as an ideal case for provincial-level
analysis from an industrial structure perspective. The province’s significant efforts toward
renewable energy and sustainable practices further justify its selection for this study design.

The study integrates several models: the Tapio decoupling model is used to assess de-
coupling states, the Logarithmic Mean Divisia Index (LMDI) is used to identify influencing
factors in decoupling, and a Data Envelopment Analysis (DEA) model of super-efficiency
Slacks-Based Measure (SBM) is used to evaluate decarbonization efficiency. This multi-
model approach is designed to provide a nuanced understanding of the interplay between
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economic development and carbon emissions in Qinghai. It offers insights for policy
formulation towards sustainable development and carbon neutrality.

The research makes four contributions. First, it analyzed decoupling states between
1990 and 2021 in Qinghai for the first time to provide a longitudinal perspective on sus-
tainable development trajectory. This perspective may help the province and country to
understand the historical trends to guide sustainable development policies toward carbon
neutrality, as well as to provide references for other countries. Second, it dissects economy-
wide decoupling into three major industries, enhancing understanding of the drivers and
barriers of decoupling from an industrial structure perspective. A breakdown of the carbon
emissions by sector and source further elucidates the complex underlying composition of
emissions. Third, a non-radial, non-oriented DEA model of super-efficiency SBM is added
to the LMDI decomposition and the Tapio decoupling models. This combination enhances
understanding of decarbonization efficiency and its influencing factors. Fourth, the study
discusses policy implications for decarbonization.

2. Literature Review
2.1. Decoupling for Carbon Neutrality in China

As an eclectic approach, green growth fosters sustainable development with inno-
vation in clean technology and substitution for achieving absolute decoupling between
economic growth and resource use [31,32]. It embodies the rapid growth of green sectors
and the ‘de-growth’ of inefficient sectors driven by green investment and high-speed green
innovation [33]. The capacity of decoupling is a defining and intertwining characteristic of
green growth for achieving carbon neutrality and sustainable development.

Decoupling literature in China can be grouped into economy-wide, sector-wide, and
prospect studies. In the first strand, China exhibited a weak decoupling to an expansive
coupling between 2000 and 2014, with the decoupling effect of the total energy consumption
from the Gross Domestic Product (GDP) as a main driver [34]. However, some studies from
the same period and 2000–2016 indicate a transition from expansive negative decoupling to
strong decoupling, with the effect of economic growth increasing carbon emissions while
the energy intensity decreases it [11,19].

Studies with different approaches provide diverse findings. From an industrial struc-
ture perspective, industrial restructuring has not increased carbon emissions, and de-
coupling shifted from a weak to strong decoupling from 2000–2001 to 2013–2016 [20].
It has a substantial effect on the primary industry, followed by tertiary and secondary
industries [20]. In terms of the economic growth efficiency effect on decoupling, efficiency
in carbon emissions reduction has marginally increased, consistent with China’s strong
negative decoupling [35]. Additionally, energy efficiency drove absolute decoupling in
22 provinces between 2006 and 2015 [17]. This has been accelerated by substituting natural
gas and oil for coal, lowering industry share, and enhancing carbon sequestration [17].

Overall, China’s decoupling from 1978 to 2020 was effectively driven by the relative
energy price, an increased share of clean energy, government intervention, decreases in
R&D investment, foreign trade, and the ratio of tertiary to secondary industries [22]. The
literature demonstrates that industrial and energy structures can potentially further isolate
economic growth from carbon emissions [11,21].

The second strand of literature focuses on specific sectors, such as mining, manufac-
turing, agriculture, and water [36–40]. China’s industrial sector, for instance, experienced
weak decoupling from 1993 to 2013, where the investment scale inhibited decoupling while
the investment efficiency and energy intensity promoted it [41]. As an underlying sector
for energy production, decoupling in China’s mining has been a research hotspot [38]. The
output scale effect and the potential energy intensity effect have driven weak decoupling
followed by strong decoupling in the mining sector [38].
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All Chinese provinces decarbonize toward carbon neutrality but with substantial
variations [42]. The eastern region shows strong decoupling, the central region fluctuates
considerably between decoupling states, and the western region shows mainly weak
decoupling [21,25,34,35,38,42].

The third strand of literature focuses on forecasting prospective scenarios of decou-
pling. As China has pledged to peak its carbon emissions by 2030 and reach carbon
neutrality by 2060, revealing the future of decoupling is vital [23,43]. China’s carbon
emissions may peak between 2025 and 2030 under baseline and green development
scenarios [25]. However, others indicate that it may peak between 2028 and 2040, with
2030 being optimum [24]. Fourteen provinces have already peaked their emissions, while
twenty-six of thirty provinces are highly likely to peak emissions on time despite perennial
economic growth [24,25].

2.2. Decoupling for Carbon Neutrality on the Qinghai-Tibet Plateau

Decoupling in the provinces of the Qinghai-Tibet Plateau remains systematically
understudied. Six of nine existing studies, summarized in Table A1, are from Chinese
academic sources while the rest are from international periodicals. From 2006 to 2016, the
plateau had a weak decoupling, hindered by the economic scale, investment intensity, and
the industrial energy structure [28]. It is promoted by R&D efficiency, energy intensity, and
R&D intensity [28].

In Qinghai, carbon emissions increased gradually, accelerated, and then fluctuated and
declined from 1997 to 2017 [44]. Decoupling was primarily driven by the structural effect
followed by the energy intensity effect, whereas economic growth and population increased
carbon emissions [44]. From 2000 to 2019, Qinghai decoupled energy consumption and car-
bon emissions from economic growth, especially from 2016 [30]. This was attributed to the
energy structure adjustment, with a fall in coal consumption and a rise in renewable energy
consumption [30]. Others observe that decoupling was weak prior to 2013 and strong after
2013 [45]. The decoupling capacity in Qinghai has been expanding but is unstable owing
to the negative effect of economic growth and investment [29]. The instability was also
attributed to the positive effect of energy efficiency, urbanization, technological investment,
and environmental regulation [29].

Other studies address decoupling from different perspectives. For example, one group
of researchers observes decoupling between the regional resource-environment and the
socio-economy systems in a prefecture in Qinghai using an indicator system [46]. Others ap-
proach decoupling greenhouse gas emissions from animal husbandry [47], transportation [48],
and water consumption [49].

Overall, systematic literature on carbon neutrality through decoupling is scant for the
QTP. Several studies indicate that Qinghai has achieved decoupling, but that it has been
unstable and requires further investment in renewable energy sources, energy efficiency,
and industrial structure. Further research is needed to identify effective strategies for
maintaining a stable decoupling in Qinghai.

3. Materials and Methods

Decoupling and decomposition models have been widely used and replicated to ex-
plore driving mechanisms, such as energy structure, energy intensity, economic growth,
population, industrial structure, technological progress, labor, and investment, for decou-
pling at global and national levels [5,19,22,34,42,50,51]. This study employs a DEA model
of super-efficiency SBM method, in addition to Tapio decoupling and LMDI decomposition
to evaluate efficiency of decarbonization.
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3.1. Data

The decoupling and decomposition models of this study used data on carbon emis-
sions, GDP per capita, population, and energy to be consistent with the literature. The
super-efficiency SBM model used fixed asset investment, labor, and energy as inputs, GDP
as desired output, and carbon emissions as undesirable output. All the data have been
used at economy-wide level, and except for population, were used at the levels of primary,
secondary, and tertiary industries.

1. Carbon emissions: CO2 emissions in million metric tons (Mt) are calculated using
mass balances based on IPCC guidelines [26]. As all the other data were available
over 1990–2021, missing ≤25% of the total data for carbon emissions over 1990–1996
and 2021 were imputed using liner regression model. Visualizations of data on carbon
emissions across sectors between 1997–2020 were provided without data imputation.

2. GDP: Gross domestic product at constant prices set in 1990 using GDP deflator.
3. Population: Total population in 10,000-person units without regard to industrial

structures.
4. Energy: Total energy consumption converted into 10,000-ton standard coal equivalent.
5. Labor: Total persons employed in urban and rural units, private and state-owned

enterprises, and self-employed citizens in 10,000-person units.
6. Capital: Calculated the price deflator index of investment data of three industries

based on method literature [52,53] and deflator construction method [54]. The perpet-
ual inventory method was used to obtain the capital stock data for the three industries
based on the depreciation rate by [55] and the base year capital stock data by [53].
The method is written as: (kt = (1− δ)kt−1 + It/Pt), wherein, It is the nominal value
of gross fixed capital formation for the current year. Pt is the investment price index.
1990 is the baseline year. δ denotes the capital stock depreciation rate set at 10.96%.
The data is in 100 million yuan. As the fixed asset investment price index was no
longer available in the 2021–2022 Statistical Yearbook, the Consumer Price Index was
used instead.

All the 1990–2021 data were obtained from the China Statistical Yearbook, Qinghai
Statistical Yearbook, China Energy Statistical Yearbook, Historical Data of China’s GDP
Accounting 1952–2002, China Fixed Asset Investment Statistical Yearbook 2004–2017, and
CEADs.

3.2. Decoupling Model

The essence of decoupling is measuring the ratio of change in resource consumption
or pollutant emissions to the ratio of change in economic growth over a given period [56].
Decoupling Index (DI) in year t is calculated as follows:

DI = (∆Rt)/(∆Gt)
∆Rt = (Rt − Rt−1)/(Rt−1)
∆Gt = (Gt − Gt−1)/(Gt−1)

(1)

wherein, ∆Rt denotes change in resource consumption in a target year and ∆Gt denotes
economic growth in a target year. DI has one of the following scenarios: DI > 1 indicates
a lack of decoupling, when resource consumption rate exceeds economic growth. DI = 1
indicates the turning point between absolute and relative decoupling. The higher the DI,
the greater the economic growth’s dependency on resources, and vice versa. 0 < DI < 1
indicates relative decoupling when resource consumption rate is less than that of economic
growth. When DI ranges from 0 to 1, there is higher resource efficiency and lower resource
dependency. DI = 0 indicates economic growth while resource consumption remains
constant. DI < 0 indicates absolute decoupling, where resource consumption or pollutant
emissions decrease as the economy expands.

Tapio [57] introduced decoupling elasticity and measured the incremental value sensi-
tivity to enhance previous decoupling models [56,58,59]. Given its multi-states of decou-
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pling, the Tapio decoupling model has been extensively used to evaluate the decoupling
relationship between carbon emissions and economic growth [11,20,22,34,38]. The Tapio
decoupling model is expressed as the below equation:

DIt =
∆C/C
∆G/G

=

(
Ct − C0/C0

)
(Gt − G0/G0)

(2)

wherein, DIt is the decoupling index for a particular period; ∆C/C denotes the growth
rate of carbon emissions; and ∆G/G denotes the growth rate of economic growth. The
target and base years are t and 0, respectively. Decoupling is interpreted according to eight
decoupling states [57], as shown in Table 1.

Table 1. Decoupling states.

Decoupling State Sub-Categories ∆C ∆G DI (C, G)

Negative
Expansive >0 >0 D > 1.2
Weak <0 <0 0 < D < 0.8
Strong >0 <0 D < 0

Decoupling
Recessive <0 <0 D > 1.2
Weak >0 >0 0 < D < 0.8
Strong <0 >0 D < 0

Coupling Expansive >0 >0 0.8 < D < 1.2
Recessive <0 <0 0.8 < D < 1.2

3.3. Decomposition Model

The Logarithmic Mean Divisia Index (LMDI) has been a dominant decomposition
model for analyzing influencing factors of energy-related carbon emissions [60]. The
LMDI method provides complete decomposition without residual errors, consistency of
addition decomposition, and multiplication decomposition, and can handle zero values in
data [40,61]. Based on prevalent literature on LMDI method [60–63], this study employs
Kaya identity [64] and LMDI method [60] to evaluate the drivers and inhibitors influencing
decoupling between carbon emissions and economic growth. It decomposes effect factors
into energy intensity, energy structure, economic growth, and population scale. Based on
Kaya identity, the decomposition factors of carbon emissions are calculated as:

C = ∑iCi,t/Ei,t × Ei,t/Gi,t × Gi,t/Pt × Pt

= ∑ic× e× g× p
(3)

wherein, i stands for industry ( i = 1, 2, 3). Ci,t denotes carbon emissions in year t. Ei,t
denotes total energy consumption in year t. Gi,t denotes GDP in year t. Pt denotes popula-
tion in year t. c simplifies the sum of Ci,t/Ei,t to denote energy structure factor or carbon
intensity of energy. e simplifies the sum of Ei,t/Gi,t to denote energy consumption intensity
factor or energy intensity of GDP. g simplifies the sum of Gi,t/Pt to denote economic growth
factor or GDP per capita, and p simplifies Pt to denote population scale factor. Based on
additive LMDI decomposition model, the change in carbon emissions from the base year
(0) to the target year (t) is obtained as:

∆C = Ct − C0 = ∆Cc + ∆Ce + ∆Cg + ∆Cp (4)

wherein, ∆C is the change in total growth of carbon emissions. ∆Cc + ∆Ce + ∆Cg + ∆Cp
denotes the effect of energy structure intensity, energy consumption intensity, economic
growth, and population on carbon emissions, respectively. The LMDI decomposition
factors are expressed as:
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∆Cc = ∑i
Ci,t−Ci,0

ln Ci,t−In Ci,0
× ln ci,t

ci,0

∆Ce = ∑i
Ci,t−Ci,0

ln Ci,t−In Ci,0
× ln ei,t

ei,0

∆Cg = ∑i
Ci,t−Ci,0

ln Ci,t−In Ci,0
× ln gi,t

gi,0

∆Cp = ∑i
Ci,t−Ci,0

ln Ci,t−In Ci,0
× ln pi,t

pi,0

=
Ci,t−Ci,0

ln Ci,t−ln Ci,0

(
ln ct

c0
+ ln et

e0
+ ln gt

g0
+ ln pt

p0

)
(5)

Combined models of Tapio decoupling and LMDI decomposition can be expressed as:

DI = %∆C
%∆G = ∆C/C0

∆G/G0
= (Ct−C0)/C0

(Gt−G0)/G0

=
(∆Cc+∆Ce+∆Cg+∆Cp)/C0

(Gt−G0)/G0

= ∆C× G0
∆G×C0

=
(
∆Cc + ∆Ce + ∆Cg + ∆Cp

)
× G0

∆G×C0

= Dc + De + Dg + Dp

(6)

wherein, ∆C denotes the change in the growth of carbon emissions. ∆G denotes the change
in GDP growth. Dc, De, Dg, and Dp denote decoupling index of each decomposition factor,
calculated as:

Dc =
G0

∆G×C0
×∑i

Ci,t−Ci,0
lnCi,t−InCi,0

× ln ci,t
ci,0

De =
G0

∆G×C0
×∑i

Ci,t−Ci,0
lnCi,t−InCi,0

× ln ei,t
ei,0

Dg = G0
∆G×C0

×∑i
Ci,t−Ci,0

lnCi,t−InCi,0
× ln gi,t

gi,0

Dp = G0
∆G×C0

×∑i
Ci,t−Ci,0

lnCi,t−InCi,0
× ln pi,t

pi,0

(7)

3.4. Efficiency Model

A few studies used DEA models to assess energy efficiency in addition to LMDI
decompositions [34,35,65]. To further evaluate decoupling in terms of efficiency in decar-
bonization, this study employs a non-radial, non-oriented DEA model of SBM developed
by Tone [66]. It has the additions of super-efficiency and undesirable output [67,68]. In
this model, the study assessed fixed asset investment, labor, and energy as input, GDP as
desired output, and carbon emissions as undesirable output. These factors play important
roles in measuring efficiency of decarbonization in addition to LMDI decomposition factors.

In the super-SBM model, when there are n decision-making units (DMU) with in-
put, desired output, and undesired output vectors: X =

(
xij
)
∈ Rm×n, Y =

(
ykj

)
∈ Rs1×n,

Z =
(

zl j

)
∈ Rs2×n, let X > 0, Y > 0, Z > 0, then the production possibility set:

P = {(x, y)|x ≥ X
∧

, y ≤ Y
∧

, z ≥ Z
∧

,
∧ ≥ 0}, where ∧ = [λ1, λ2, . . . , λn] ∈ Rn denotes

the weight coefficient vector, and the two inequalities in the P function indicate that the
actual input is greater than or equal to the frontier, the actual desired output is less than or
equal to the frontier output, and the actual undesirable output is greater than or equal to
the frontier. Thus, each DMU has input, desirable output, and undesirable output, denoted
by X, Y, Z, respectively. sx ∈ Rm, sz ∈ Rs2 denote the excess of inputs and undesirable
outputs, respectively, and sy ∈ Rs1 denote the shortage of expected outputs [68].

As there is a lack of SBM model formulae with undesirable output by Tone [68],
this study refers to the formula proposed by Cheng [69] to evaluate efficiency of DMUs
(x0, y0, z0). The super-SBM model with undesirable output is derived as follow:
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ρ = min
1+ 1

m ∑m
i=1

wx
i sx

i
xi0

1− 1
s1+s2

(
∑

s1
k=1

wy
k sy

k
yk0

+∑
s2
l=1

wz
l sz

l
zi0

)

s.t.xi0 ≥
n

∑
j=1, 6=0

λjxj − sx
i , ∀i;

yk0 ≤
n

∑
j=1, 6=0

λjyj + sy
k , ∀k;

zl0 ≥
n

∑
j=1, 6=0

λjzj − sz
l , ∀l;

0 < 1− 1
s1+s2

(
s1

∑
k=1

wy
k sy

k
yk0

+
s2

∑
l=1

wz
l sz

l
zl0

)
;

sx
i ≥ 0, sy

k ≥ 0, sz
l ≥ 0, λj ≥ 0, ∀i, j, k, l;

(8)

wherein, ρ denotes the efficiency value of the DMU, and m, s1 and s2 denote the number
of variables for inputs, expected outputs, and undesired outputs. When ρ = 1, that is,
sx = 0, sy = 0, sz = 0, DMU is valid. When ρ < 1, DMU is non-valid and there is room
for improvement. The model calculates an efficiency value as ρ ≥ 1. Equal weighting is
expressed as wx

i = 1, wy
k = 1, wz

l = 1.
In contrast to super-efficiency models based on radial and directional DEA, the super-

efficiency SBM model does not merely increase the condition of j 6= 0 [67]. It calculates
efficient DMUs and returns 1 for inefficient DMUs. This study calculated super-efficiency
SBM model results by synthesizing the non-super-efficiency model results and the super-
efficiency model results. In other words, the efficient regions are calculated with the
super-efficiency model and the inefficient regions with the non-super-efficiency model.
The slack variables and Lambda coefficients are calculated using the coefficients from the
non-super-efficiency model.

4. Results and Discussion
4.1. Carbon Emissions and Economic Growth

The relationship between carbon emissions and economic growth determines the
decoupling for carbon neutrality. Figure 1 depicts the growth of carbon emissions and the
GDP in overall, primary, secondary, and tertiary industries from 1990 to 2021. The overall
carbon emissions have gradually increased, accelerated, and then fluctuated and declined,
confirming the general trends observed by previous studies between 2000–2019 [10,29,30,45].
The growth of carbon emissions was mostly attributable to the secondary industry, followed
by the tertiary industry, and then by the primary industry. The rise of carbon emissions
from the secondary and tertiary industries was largely positive from 1990 to 2021, with
some negative growth. For example, secondary industry experienced negative carbon
emissions in 1997, 2000, 2010, and from 2016 to 2021. The tertiary industry had negative
growth in 1997, 1998, 2001, 2012, and 2020. The rest of the years were growth positive.
The secondary industry peaked carbon emissions in 2006 and the tertiary industry peaked
carbon emissions in 2002. The primary industry had notable growth of carbon emissions in
2003, 2006, 2010, 2011, 2016, and 2020, while emissions were negative from 2001 to 2002,
2012 to 2015, 2017 to 2019, and 2021. They peaked in 2008.
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Figure 1. Annual growth of carbon emissions and GDP in overall and each industry.

Economic growth underlies decoupling or coupling in all sectors of the economy.
Figure 1 indicates the economic growth in the primary, secondary, and tertiary industries
from 1990 to 2021. The secondary and tertiary industries had positive growth throughout
the study period, while the primary industry had negative growth in 1993, 1995, and
2000. The secondary industry led overall growth, followed by the tertiary industry and
the primary industry. The primary industry grew almost constantly throughout the whole
period, while the secondary industry peaked in 2010 and then gradually declined with
a glitch due to the COVID-19 pandemic in 2020. The tertiary industry has grown almost
constantly until its peak in 2010 and has since declined with a steep drop in 2020.

The divergent growth rates of the three industries are reflected in the structural changes
and their respective output. In 1990, the GDP and its structural share were 17.67 (25%) in
agriculture, 26.89 (38%) in manufacturing, and 25.38 (36%) in services [70]. In 2021, they
were 352.65 (10%), 1332.61 (40%), and 1661.37 (50%), respectively [71]. While the output of
the three industries have grown significantly from 1990 to 2021, their structures also shifted
a great deal. The share of agriculture shrunk dramatically, while that of manufacturing
expanded slightly, and the service industry increased significantly.

Sub-sectors and sources of carbon emissions shed light on the underlying composi-
tion of the emissions in the three industries. Figure 2 indicates the top 15 of 46 sectors
contributing 97.41% of the cumulative carbon emissions in Qinghai, totaling 755.0616 Mt,
from 1997 to 2020. With 56.6717 Mt, emissions peaked in 2016 almost simultaneously across
the sectors and sources. Table A2 provides a complete sector-specific carbon emissions
account. Figure 3 depicts the top 10 sources of carbon emissions in Qinghai. These sources
account for 99.12% of the overall carbon emissions, totaling 768.2773 Mt, from 1997 to 2020.
Table A3 provides a complete accounting of the carbon emissions by the top sources.
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4.2. Decoupling toward Carbon Neutrality

The overall trend from 1990 to 2021 was mostly weak decoupling, followed by strong
decoupling, expansive negative decoupling, and expansive coupling, as shown in Figure 4
and Table A4. These trends confirm the general decoupling states observed in the pre-
vious studies between 2000–2019 [29,30,44,45]. Weak decoupling accounted for 15 years.
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Expansive negative decoupling occurred in 1999, 2001, 2006, 2008, 2012, and 2016, while
expansive coupling occurred in 2003 and 2011. Early strong decoupling occurred only
in 1997, 2000, and 2010, while it was consistent from 2017 to 2021. The decoupling trend
corresponds to the actual output of carbon emissions, which peaked in 2016 and have since
gained traction in strong decoupling. The strongest decoupling state was in 2020 due to the
low economic activity during the COVID-19 pandemic. It returned to pre-pandemic levels
by 2021.
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As shown in Figure 4 and Table A5, strong decoupling dominated the primary industry,
followed by weak decoupling, expansive negative decoupling, strong negative decoupling,
and expansive coupling. Strong decoupling occurred from 2000 to 2002, 2011 to 2015, 2016
to 2019, and from 2020 to 2021. Prior to 2009, weak decoupling occurred occasionally, and
strong negative decoupling occurred in 1993, 1995, and 2000. Expansive coupling occurred
in 2003 and 2006, while expansive negative decoupling occurred seven times throughout
the study period.

The secondary industry was mostly weak decoupling, followed by strong decoupling,
expansive negative decoupling, and expansive coupling, as shown in Figure 4 and Table A6.
Strong decoupling has been more consistent from 2016 to 2021 than it was in 1997, 2000,
and 2010. Expansive negative decoupling occurred in 1999, 2001, 2006, 2008, and 2012,
while expansive coupling occurred in 1991, 2003, 2011, and 2016. The rest of the years were
weak decoupling.

The tertiary industry was mostly weak decoupling, followed by expansive negative
decoupling, strong decoupling, and expansive coupling, as illustrated in Figure 4 and
Table A7. While most periods were weak decoupling, expansive negative decoupling
occurred from 1998 to 1999, 2001 to 2003, 2004 to 2005, 2006 to 2007, and 2015 to 2018. In
recent years, strong decoupling dominated the primary and secondary industries while
the tertiary industry has seen few strong decoupling. Strong decoupling in the tertiary
industry occurred from 1996 to 1998, 2000 to 2001, 2011 to 2012, and 2019 to 2020. The most
recent index of strong decoupling was −30.1394, an outlier due to the COVID-19 pandemic.
Expansive decoupling occurred from 2003 to 2004 and 2007 to 2011.
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4.3. Factor Decomposition Analysis

The overall industry decomposition results for decoupling, as shown in Figure 5,
indicate that economic growth (EG) was the single most negative factor on decoupling
from 1990 to 2021. This is consistently followed by population (P), with a marginally
negative decoupling effect throughout the whole period. The effect of economic growth
peaked in 2013 and the effect of population peaked in 2016. Energy structure (ES) and
energy intensity (EI) have both positive and negative effects on decoupling. From 1990
to 2021, energy structure had a negative effect on decoupling for fourteen years and a
positive effect for seventeen years. Energy intensity had a negative effect on decoupling
for eight years and a positive effect for twenty-three years. Notably, energy structure had
the most negative effect on decoupling in 1993, 2001, 2008, 2012, and 2016, and similarly
for energy intensity in 1994, 1999, and 2021. In contrast, energy structure had the most
positive effect on decoupling in 1994, 2004, 2005, 2010, 2014, 2017, 2018, 2020, and 2021,
and similarly for energy intensity in 1993, 2009, 2016, 2017, and 2019. Table A8 provides
complete decomposition results.
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The decomposition results for the primary industry decoupling in Figure 5 show
that economic growth and population mostly inhibited decoupling. Energy structure
and energy intensity primarily promoted decoupling. Economic growth mostly inhibited
decoupling, but it also promoted decoupling in 1991, 1993, 1995, 1999, and 2000. Population
marginally inhibited decoupling over the whole period. Notably, energy structure had the
most negative effect on decoupling in 2008, with an index of 0.1099. It had a positive effect
in 1995 and 2015, with an index of −0.0725 and −0.0546, respectively. Energy intensity had
the most negative effect on decoupling in 1995 with an index of 0.0752 and a positive effect
in 2017 with an index of −0.0594. Table A9 provides complete decomposition results.

Figure 5 shows that economic growth and population had a negative effect on de-
coupling for the secondary industry from 1990 to 2021. Economic growth had the most
significant effect from 2000 to 2019, peaking in 2013. It had a setback in 2020 due to the
COVID-19 pandemic but swiftly rebounded by 2021. The effect of population has been
less significant than that of economic growth and peaked in 2016. While energy struc-
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ture and energy intensity mostly promoted decoupling, they also had a negative effect
on decoupling. Notably, energy structure had the most negative effect on decoupling in
2001, 2008, 2012, and 2016. It had a significantly positive effect in 2004, 2005, 2010, 2014,
2017, 2018, 2020, and 2021. Energy intensity had the most negative effect in 2021, while
it primarily promoted decoupling in 2009, and from 2015 to 2020. Table A10 provides
complete decomposition results.

Figure 5 shows that for the tertiary industry, economic growth and population inhib-
ited decoupling. Economic growth had briefly promoted decoupling during the COVID-19
pandemic. The economic growth effect on decoupling has been rising from 2000 to 2019
and in 2021, peaking in 2012 and 2018. The effect of population has been more marginal
than that of economic growth, peaking in 2017. Throughout the period, energy structure
and energy intensity had both positive and negative effects on decoupling. Notably, en-
ergy structure was most negative on decoupling in 1992, 2007, 2011, and 2016 and it was
remarkably positive in 1993, 2005, 2012, 2015, 2020, and 2021. Energy intensity was most
negative in 1993, 2002, 2005, 2015, 2017, 2018, and 2021 and it was notably positive in 1992,
2001, 2011, 2013, and 2019. Table A11 provides complete decomposition results.

4.4. Decomposition Analysis by Industries

As indicated in Figure 6, the energy structure effect in the primary, secondary, and
tertiary industries mostly promoted decoupling from 1990 to 2021. They had both positive
and negative effects on decoupling, dominated by the secondary industry, followed by the
tertiary and primary industries. The energy intensity effect in all the industries had mostly
promoted decoupling, dominated by the secondary industry followed by the tertiary and
primary industries. The economic growth effect was largely negative to decoupling in all
three industries, dominated by the secondary industry, followed by the tertiary industry.
The effect in the secondary industry peaked in 2013, the tertiary industry in 2012, and the
primary industry in 2013. Finally, the population effect in all industries showed a negative
effect on decoupling throughout the study period. It has been dominated by the secondary
industry followed by the tertiary industry. While the population effect in the secondary
industry has constantly risen and peaked in 2016, the effect in 2013, 2015, and 2018 has been
atypically low. Throughout the period, the population effect in the tertiary industry has
been much lower than that of the secondary industry, but higher than that of the primary
industry. The population effect in the tertiary industry peaked in 2017. In contrast, the
population effect in the primary industry was negligible and peaked in 2010.
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4.5. Decarbonization Efficiency for Carbon Neutrality

Figure 7 depicts the efficiency of reducing carbon emissions as an undesirable output,
the GDP as an output, and energy, capital, and labor as inputs from 1900 to 2021. In this
period, the overall efficiency was high with a mean of 0.9518 and a standard deviation
of 0.0677. Efficiency started from the lowest ρ value of 0.8071 in 1990 and to the highest
ρ value of 1.0387 in 2021. Notably, the efficiency values where ρ = 1 ≥ occurred for
14 years, while a steep decline of efficiency values below 0.9500 occurred from 1990 to 1992,
1997, 1999, 2005 to 2006, and 2015 to 2019. The downturn in 1991, 1992, 1997, and 1999 was
primarily driven by inefficiency in the secondary industry, followed by fluctuations in the
primary and tertiary industries. The downturn from 2005 to 2006 was driven by a decline in
the tertiary industry, followed by fluctuations in the secondary industry. The steep decline
from 2015 to 2019 is mostly attributable to inefficiency in the primary industry, followed
by a minor inefficiency in the secondary and tertiary industries. Table 2 summarizes the
efficiency statistics and Table A12 provides the complete efficiency values for the overall
and individual industries.
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Table 2. Summary of efficiency in primary, secondary, and tertiary industries, 1990–2021.

Industry Mean Median Standard Deviation Minimum Maximum

Overall 0.9518 0.9642 0.0677 0.8068 1.0387
Primary 0.8700 0.8999 0.1357 0.5981 1.0567
Secondary 0.8758 0.9035 0.1464 0.5173 1.0425
Tertiary 0.9388 1.0023 0.1056 0.7171 1.1138

From 1990 to 2021, Figure 7 shows a mean efficiency value of 0.8700 and a stan-
dard deviation of 0.1357 in the primary industry. The industry had efficiency values
ρ = 1 ≥ for 10 years, with lower efficiency in 1993, 1995, and 1996, and a significant decline
from 2008 to 2020. Its lowest efficiency value was 0.5981 in 2016. In recent years, efficiency
has increased.
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Figure 7 shows a mean efficiency value of 0.8758 and a standard deviation of 0.1464
for the secondary industry. It had 12 years of efficiency values where ρ = 1 ≥. In the
early years, from 1991 to 1992 and 1996 to 2002, efficiency was notably low. In later years,
efficiency was generally higher but with volatility.

Figure 7 shows a mean efficiency value of 0.9388 for the tertiary industry, the highest
of all three industries with a standard deviation of 0.1056. The industry had 17 years of
efficiency values where ρ = 1 ≥, outpacing the other two industries. It had also fluctuated,
particularly before 2008. Efficiency declined in 1991, 1993 to 1995, 1999 to 2000, and most
notably from 2002 to 2007. With an outlier efficiency value of 1.1138 in 2001, efficiency has
been high and most consistent from 2008 to 2016.

5. Conclusions

This study analyzed carbon neutrality through decoupling in Qinghai from 1990 to
2021. It explored the relationship between carbon emissions and economic growth, and the
trends and influencing factors of decoupling from an industrial structure perspective. The
Tapio decoupling, Logarithmic Mean Divisia Index, and DEA model of super-efficiency
Slacks-Based Measure were used. During the study period, carbon emissions in the overall,
primary, secondary, and tertiary industries followed a trend of initial growth, acceleration,
fluctuation, and decline. The secondary industry contributed most to carbon emissions,
followed by the tertiary and primary industries. Economic growth showed a similar
trend with the secondary and tertiary industries leading, while the primary industry
experienced some negative growth. The GDP and structural share of these industries
changed significantly over the years, reflecting a shift from agriculture to manufacturing
and services. This study also examined the top sectors and sources contributing to carbon
emissions in Qinghai, revealing that the top 15 of 46 sectors accounted for 97.41% of the
cumulative emissions.

The decoupling trends between 1990 and 2021 varied across the industries. Overall,
the trend shifted from weak to strong decoupling, with periods of expansive negative
decoupling and expansive coupling. Each industry exhibited distinct decoupling patterns.
The primary industry had mostly experienced strong decoupling. The secondary industry
experienced a mix of weak and strong decoupling. The tertiary industry had predominantly
experienced weak decoupling with periods of strong and expansive negative decoupling.
The factor decomposition analysis revealed that economic growth negatively impacted
decoupling across the industries, while the population had a marginal effect. Energy
structure and intensity generally showed positive effects. In addition, the study revealed
an overall high efficiency in decarbonization, with a mean of 0.9518 and variations across
the industries. The tertiary industry showed the highest mean efficiency, while the primary
and secondary industries had lower and more volatile efficiency levels.

The overall findings underscore the complexity of achieving carbon neutrality, high-
lighting the need for industry-specific, tailored strategies across the different industrial
sectors, and the balanced promotion of economic growth alongside sustainable practices.
Three essential policy implications are highlighted for enhancing decoupling and accelerat-
ing progress towards carbon neutrality:

Focus on Secondary Industry: The study revealed that the secondary industry, which
includes manufacturing and processing, is a significant contributor to carbon emissions
in Qinghai and exhibits weak decoupling. Policies should target this sector for greener
growth, emphasizing efficiency improvements and reduced reliance on energy-intensive
processes. Key sectors contributing over 70% of emissions, such as the production and
supply of electric power, steam and hot water, nonmetal mineral products, the smelting
and pressing of ferrous metals, petroleum and natural gas extraction, and raw chemical
materials and chemical products, should be prioritized for sustained decoupling.

Optimize Energy Structure and Intensity: Strong decoupling also depends on opti-
mizing the energy structure and intensity. Policies should focus on diversifying energy
sources by increasing the use of sustainable alternatives and reducing dependency on fossil
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fuels, such as raw coal, natural gas, and diesel oil, which are major carbon emitters. The
implementation of clean technologies and market-based incentives can further facilitate
this transition. Ensuring energy efficiency in all processes, especially those contributing
significantly to emissions, is crucial for sustainable development.

Strengthen and Sustain Decoupling Efforts: Qinghai has achieved a strong, though
volatile, decoupling state since 2017. To maintain and strengthen this progress, policies
should continue to support and expand renewable energy initiatives. An investment
in clean technology and emerging low-carbon industries is essential. Coordination and
integration with other provinces are necessary to leverage the shared resources, and ad-
vanced research and technologies. This collaborative approach can maximize the impact
of sustainable policies and contribute to a more cohesive national strategy for carbon
neutrality.

These policy directions are crucial for Qinghai’s sustainable development trajectory.
While the focus is on regional specifics, the lessons and strategies can be extrapolated
to other regions and countries, particularly those with similar industrial structures and
sustainability challenges. However, the study faces several limitations regarding the
generalizability of its results, the use of imputed data for early carbon emissions, and the
potential inadequacies in accounting for the full factors and their interconnections. These
constraints necessitate a careful interpretation of the findings and highlight the need for
further research across various geographical and industrial contexts, the acquisition of
complete data and the application of robust imputation techniques, and the development
of more extensive models to comprehensively understand the complexities involved in
achieving carbon neutrality.

Funding: The APC was funded by Frank Yih.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Acknowledgments: This article is part of my doctoral dissertation at the Department of Economics,
SOAS University of London, UK. I appreciate the feedback provided by Dic Lo and Risa Morimoto.
In addition, I thank Frank Yih’s longstanding support for my academic research.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A

Table A1. Key decoupling literature on the Qinghai-Tibet Plateau.

Authors Methods Variables Periods

Fan et al., 2020 [28] LMDI; Tapio energy consumption, economic scale, investment intensity, energy
structure, energy intensity, R&D efficiency, R&D intensity 2006–2016

Huang et al., 2021 [44] LMDI; Tapio energy-related carbon emissions, energy structure, energy intensity,
economic growth, population 1997–2017

Bai et al., 2021 [47] LMDI; Tapio; DEA carbon emissions in animal husbandry, efficiency, structure, economy,
labor force 1980–2015

Li et al., 2019 [48] LMDI; traffic carbon emissions, energy structure, energy intensity, economic
output, population scale 2008–2017

Wang, Feng et al., 2021 [30] LMDI; energy consumption, carbon emission, energy structure, energy
intensity, economic growth, industrial restructure, population scale 2000–2019

Hu et al., 2021 [45] Tapio; GDIM investment intensity, investment efficiency, output scale, output
intensity, energy consumption, energy intensity, carbon emissions 2000–2019

Huang & Hu, 2021 [29] Tapio; Entropy; OLS economic, investment, industry structure, energy efficiency,
urbanization, technical investment, environmental regulation 2000–2019

Wang, Wang et al., 2021 [46] Tapio; CHDM;
indicator system

resource and environmental level, resource and environmental pressure,
resource and environmental system, social and economic system 2000–2018

Sun et al., 2020 [49] LMDI water intensity, urban and rural product export structure, trade volume 2012
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Table A2. Cumulative sectoral carbon emissions from 1997 to 2020.

Industries Sectors Emissions Share

Primary Farming, Forestry, Animal Husbandry,
Fishery and Water Conservancy 5.8518 0.75%

Secondary

Coal Mining and Dressing 6.3508 0.82%
Petroleum and Natural Gas Extraction 61.1542 7.89%
Ferrous Metals Mining and Dressing 0.4555 0.06%
Nonferrous Metals Mining and Dressing 3.3651 0.43%
Nonmetal Minerals Mining and Dressing 1.7715 0.23%
Other Minerals Mining and Dressing 0.0298 0.00%
Food Processing 1.5132 0.20%
Food Production 0.9944 0.13%
Beverage Production 0.7748 0.10%
Tobacco Processing 0.2497 0.03%
Textile Industry 0.1953 0.03%
Garments and Other Fiber Products 0.4291 0.06%
Leather, Furs, Down and Related Products 0.1511 0.02%
Timber Processing, Bamboo, Cane, Palm
Fiber & Straw Products 0.0294 0.00%

Furniture Manufacturing 0.0707 0.01%
Papermaking and Paper Products 0.0986 0.01%
Printing and Record Medium Reproduction 0.3807 0.05%
Cultural, Educational and Sports Articles 0.2176 0.03%
Petroleum Processing and Coking 5.3422 0.69%
Raw Chemical Materials and Chemical
Products 51.2160 6.61%

Medical and Pharmaceutical Products 1.9361 0.25%
Chemical Fiber 0.0301 0.00%
Rubber Products 0.1818 0.02%
Plastic Products 3.2972 0.43%
Nonmetal Mineral Products 98.9367 12.76%
Smelting and Pressing of Ferrous Metals 91.8585 11.85%
Smelting and Pressing of Nonferrous Metals 11.3457 1.46%
Metal Products 0.6053 0.08%
Ordinary Machinery 1.4187 0.18%
Equipment for Special Purposes 0.3340 0.04%
Transportation Equipment 0.0662 0.01%
Electric Equipment and Machinery 0.5666 0.07%
Electronic and Telecommunications
Equipment 0.0524 0.01%

Instruments, Meters, Cultural and Office
Machinery 0.0498 0.01%

Other Manufacturing Industry 0.2585 0.03%
Scrap and waste 0.0556 0.01%
Production and Supply of Electric Power,
Steam and Hot Water 250.8114 32.36%

Production and Supply of Gas 0.0454 0.01%
Production and Supply of Tap Water 0.4187 0.05%
Construction 8.5524 1.10%

Tertiary

Transportation, Storage, Post and
Telecommunication Services 46.3851 5.98%

Wholesale, Retail Trade and Catering
Services 16.0040 2.06%

Others 32.0116 4.13%

Households
Urban Households 38.5570 4.97%
Rural Households 30.6842 3.96%

Total 775.1043 100.00%
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Table A3. Top 15 sources of carbon emissions from 1997 to 2020.

Year Raw Coal Coke Coke Oven Gas Other Gas Gasoline

1997 8.421359 0.373957 0.000000 0.396292 0.518619
1998 8.414337 0.373957 0.000000 0.396292 0.518619
1999 10.284698 0.368491 0.000000 0.398080 0.510132
2000 8.349702 0.448460 0.000000 0.391524 0.472669
2001 10.467052 0.501677 0.000000 0.394504 0.469743
2002 10.133567 0.514334 0.000000 0.400463 0.430232
2003 11.134053 0.870744 0.000000 0.415361 0.452475
2004 10.939949 1.186018 0.000000 0.399867 0.448085
2005 11.325319 1.053695 0.000000 0.264592 0.502230
2006 13.705366 2.343269 0.035742 0.064360 0.530619
2007 15.044180 2.370827 0.039201 0.000001 0.479401
2008 16.861240 3.684619 0.264561 0.826891 0.624632
2009 16.792529 4.553481 0.321921 0.932501 0.677363
2010 15.235584 3.929936 0.274188 0.933675 0.766281
2011 17.542671 3.829402 0.200617 0.921900 0.847293
2012 20.858538 5.488425 0.189929 1.104385 0.875255
2013 22.097378 5.650227 0.219064 1.192451 0.961143
2014 22.318013 6.214628 0.030208 1.154467 1.087318
2015 25.153242 6.116293 0.079555 1.052408 1.314987
2016 27.841790 5.606478 0.041899 0.937698 1.639057
2017 25.397793 5.502949 0.106811 1.054243 1.757508
2018 22.912774 5.721400 0.223676 1.227611 1.816924
2019 21.940058 5.793556 0.202923 1.275881 1.954774
2020 19.754889 5.831709 0.270948 1.388511 2.188328

Total 392.926080 78.328532 2.501242 17.523960 21.843687

Year Diesel Oil LPG Refinery Gas Natural Gas Process

1997 0.337536 0.286474 0.091553 0.579075 0.229719
1998 0.337536 0.286474 0.091553 0.579075 0.294407
1999 0.552556 0.366624 0.059476 0.749773 0.339276
2000 0.594323 0.379460 0.041098 0.844845 0.359501
2001 0.542965 0.388540 0.036086 1.257544 0.511834
2002 0.544512 0.315591 0.080860 2.402731 0.765731
2003 0.663006 0.000000 0.000000 3.035824 0.892142
2004 0.703225 0.226361 0.082865 3.833133 0.996206
2005 0.719622 0.000000 0.104918 4.687799 1.077022
2006 0.835022 0.146211 0.183105 4.870283 1.079056
2007 1.483796 0.167501 0.111935 4.335416 1.269486
2008 2.408835 0.246868 0.197206 4.589057 1.330222
2009 2.686534 0.248478 0.155248 5.052963 1.775537
2010 2.777343 0.245425 0.207497 4.986617 2.357028
2011 3.156933 0.274576 0.189788 6.605205 3.045750
2012 3.282792 0.273957 0.203497 8.268698 4.096065
2013 3.388660 0.290231 0.197473 8.576071 5.340385
2014 3.507745 0.308675 0.167371 8.347137 5.432970
2015 3.532523 0.000626 0.187449 8.651415 5.137488
2016 3.982200 0.308786 0.171026 9.369542 5.508091
2017 4.705965 0.335672 0.201523 10.086252 4.213700
2018 4.924432 0.284595 0.170742 10.621105 3.937223
2019 5.229174 0.315904 0.180098 10.845276 3.894040
2020 4.770051 0.313086 0.135658 9.636942 3.533696

Total 55.667286 6.010115 3.248025 132.811778 57.416574
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Table A4. The overall decoupling state of three industries from 1990 to 2021.

Year ∆C ∆G DI Decoupling State

1990–1991 0.0384 0.0483 0.7945 weak decoupling
1991–1992 0.0369 0.0749 0.4935 weak decoupling
1992–1993 0.0356 0.0980 0.3636 weak decoupling
1993–1994 0.0344 0.0825 0.4172 weak decoupling
1994–1995 0.0333 0.0818 0.4063 weak decoupling
1995–1996 0.0322 0.0879 0.3662 weak decoupling
1996–1997 −0.0749 0.0912 −0.8216 strong decoupling
1997–1998 0.0050 0.0895 0.0559 weak decoupling
1998–1999 0.1863 0.0821 2.2684 expansive negative decoupling
1999–2000 −0.1185 0.0910 −1.3029 strong decoupling
2000–2001 0.2166 0.1201 1.8028 expansive negative decoupling
2001–2002 0.0686 0.1245 0.5506 weak decoupling
2002–2003 0.1211 0.1224 0.9897 expansive coupling
2003–2004 0.0786 0.1264 0.6219 weak decoupling
2004–2005 0.0455 0.1250 0.3636 weak decoupling
2005–2006 0.2246 0.1258 1.7858 expansive negative decoupling
2006–2007 0.0662 0.1277 0.5181 weak decoupling
2007–2008 0.2158 0.1302 1.6578 expansive negative decoupling
2008–2009 0.0596 0.1028 0.5796 weak decoupling
2009–2010 −0.0432 0.1571 −0.2751 strong decoupling
2010–2011 0.1513 0.1384 1.0934 expansive coupling
2011–2012 0.2185 0.1254 1.7419 expansive negative decoupling
2012–2013 0.0722 0.1107 0.6523 weak decoupling
2013–2014 0.0125 0.0935 0.1342 weak decoupling
2014–2015 0.0534 0.0830 0.6431 weak decoupling
2015–2016 0.1035 0.0818 1.2649 expansive negative decoupling
2016–2017 −0.0562 0.0733 −0.7671 strong decoupling
2017–2018 −0.0289 0.0734 −0.3941 strong decoupling
2018–2019 −0.0036 0.0629 −0.0568 strong decoupling
2019–2020 −0.0739 0.0191 −3.8722 strong decoupling
2020–2021 −0.0124 0.0602 −0.2055 strong decoupling

Table A5. The decoupling state of primary industry from 1990 to 2021.

Year ∆C ∆G DI Decoupling State

1990–1991 0.0146 0.0098 1.4870 expansive negative decoupling
1991–1992 0.0144 0.0401 0.3580 weak decoupling
1992–1993 0.0142 −0.0067 −2.1124 strong negative decoupling
1993–1994 0.0140 0.0360 0.3877 weak decoupling
1994–1995 0.0138 −0.0050 −2.7541 strong negative decoupling
1995–1996 0.0136 0.0370 0.3669 weak decoupling
1996–1997 0.0148 0.0350 0.4232 weak decoupling
1997–1998 0.0007 0.0350 0.0190 weak decoupling
1998–1999 0.0165 0.0104 1.5888 expansive negative decoupling
1999–2000 0.0087 −0.0400 −0.2181 strong negative decoupling
2000–2001 −0.0466 0.0585 −0.7963 strong decoupling
2001–2002 −0.0232 0.0455 −0.5101 strong decoupling
2002–2003 0.0346 0.0385 0.8977 expansive coupling
2003–2004 0.0129 0.0385 0.3356 weak decoupling
2004–2005 0.0169 0.0505 0.3350 weak decoupling
2005–2006 0.0281 0.0350 0.8033 expansive coupling
2006–2007 0.0069 0.0440 0.1565 weak decoupling
2007–2008 0.7105 0.0390 18.2185 expansive negative decoupling
2008–2009 0.0130 0.0500 0.2597 weak decoupling
2009–2010 0.1530 0.0590 2.5927 expansive negative decoupling
2010–2011 0.0863 0.0480 1.7985 expansive negative decoupling
2011–2012 −0.0167 0.0520 −0.3204 strong decoupling
2012–2013 −0.0022 0.0530 −0.0415 strong decoupling
2013–2014 −0.0028 0.0520 −0.0542 strong decoupling
2014–2015 −0.0513 0.0510 −1.0065 strong decoupling
2015–2016 0.1647 0.0540 3.0505 expansive negative decoupling
2016–2017 −0.1323 0.0490 −2.6992 strong decoupling
2017–2018 −0.0330 0.0450 −0.7334 strong decoupling
2018–2019 −0.0047 0.0460 −0.1029 strong decoupling
2019–2020 0.0578 0.0446 1.2954 expansive negative decoupling
2020–2021 −0.0690 0.0445 −1.5492 strong decoupling
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Table A6. The decoupling state of secondary industry from 1990 to 2021.

Year ∆C ∆G DI Decoupling State

1990–1991 0.0481 0.0426 1.1294 expansive coupling
1991–1992 0.0459 0.0764 0.6008 weak decoupling
1992–1993 0.0439 0.1474 0.2977 weak decoupling
1993–1994 0.0420 0.0826 0.5090 weak decoupling
1994–1995 0.0403 0.0933 0.4324 weak decoupling
1995–1996 0.0388 0.1010 0.3840 weak decoupling
1996–1997 −0.0568 0.1038 −0.5472 strong decoupling
1997–1998 0.0077 0.1115 0.0687 weak decoupling
1998–1999 0.2200 0.0937 2.3481 expansive negative decoupling
1999–2000 −0.1291 0.1147 −1.1260 strong decoupling
2000–2001 0.1952 0.1520 1.2840 expansive negative decoupling
2001–2002 0.0081 0.1644 0.0492 weak decoupling
2002–2003 0.1524 0.1646 0.9256 expansive coupling
2003–2004 0.0706 0.1661 0.4249 weak decoupling
2004–2005 0.0273 0.1585 0.1725 weak decoupling
2005–2006 0.3177 0.1580 2.0107 expansive negative decoupling
2006–2007 0.0883 0.1490 0.5925 weak decoupling
2007–2008 0.2695 0.1650 1.6333 expansive negative decoupling
2008–2009 0.0624 0.1130 0.5522 weak decoupling
2009–2010 −0.0831 0.1930 −0.4306 strong decoupling
2010–2011 0.1623 0.1740 0.9330 expansive coupling
2011–2012 0.2960 0.1410 2.0991 expansive negative decoupling
2012–2013 0.0776 0.1230 0.6307 weak decoupling
2013–2014 0.0097 0.1000 0.0966 weak decoupling
2014–2015 0.0624 0.0840 0.7428 weak decoupling
2015–2016 0.0985 0.0850 1.1594 expansive coupling
2016–2017 −0.0870 0.0720 −1.2082 strong decoupling
2017–2018 −0.0566 0.0780 −0.7261 strong decoupling
2018–2019 −0.0118 0.0630 −0.1878 strong decoupling
2019–2020 −0.0951 0.0271 −3.5095 strong decoupling
2020–2021 −0.0219 0.0649 −0.3374 strong decoupling

Table A7. The decoupling state of tertiary industry from 1990 to 2021.

Year ∆C ∆G DI Decoupling State

1990–1991 0.0453 0.0811 0.5585 weak decoupling
1991–1992 0.0433 0.0959 0.4518 weak decoupling
1992–1993 0.0415 0.1130 0.3675 weak decoupling
1993–1994 0.0399 0.1079 0.3696 weak decoupling
1994–1995 0.0383 0.1150 0.3334 weak decoupling
1995–1996 0.0369 0.0983 0.3757 weak decoupling
1996–1997 −0.0721 0.1031 −0.6989 strong decoupling
1997–1998 −0.0082 0.0899 −0.0912 strong decoupling
1998–1999 0.2899 0.0981 2.9550 expansive negative decoupling
1999–2000 0.0000 0.1136 0.0001 weak decoupling
2000–2001 −0.1383 0.1068 −1.2953 strong decoupling
2001–2002 0.7820 0.1057 7.3979 expansive negative decoupling
2002–2003 0.1675 0.0989 1.6938 expansive negative decoupling
2003–2004 0.1125 0.1029 1.0934 expansive coupling
2004–2005 0.2445 0.1018 2.4014 expansive negative decoupling
2005–2006 0.0382 0.1050 0.3634 weak decoupling
2006–2007 0.2162 0.1170 1.8475 expansive negative decoupling
2007–2008 0.0956 0.1000 0.9561 expansive coupling
2008–2009 0.0847 0.0980 0.8643 expansive coupling
2009–2010 0.1237 0.1210 1.0222 expansive coupling
2010–2011 0.0893 0.0970 0.9209 expansive coupling
2011–2012 −0.0189 0.1110 −0.1706 strong decoupling
2012–2013 0.0457 0.0980 0.4668 weak decoupling
2013–2014 0.0380 0.0880 0.4318 weak decoupling
2014–2015 0.0112 0.0860 0.1301 weak decoupling
2015–2016 0.1448 0.0800 1.8097 expansive negative decoupling
2016–2017 0.1378 0.0790 1.7446 expansive negative decoupling
2017–2018 0.1031 0.0690 1.4938 expansive negative decoupling
2018–2019 0.0320 0.0650 0.4922 weak decoupling
2019–2020 −0.0332 0.0011 −30.1394 strong decoupling
2020–2021 0.0237 0.0536 0.4425 weak decoupling
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Table A8. The overall decomposition effect of decoupling in three industries from 1990 to 2021.

Year ∆Cc ∆Ce ∆Cg ∆Cp

1990–1991 1.6806 −1.7787 0.3315 0.1548
1991–1992 0.6214 −1.0058 0.6185 0.1541
1992–1993 2.5659 −3.2144 0.9008 0.1358
1993–1994 −4.9392 4.4179 0.7313 0.1781
1994–1995 0.6288 −1.1741 0.7546 0.1789
1995–1996 −1.7262 1.0821 0.8529 0.1795
1996–1997 −1.3254 −0.6531 0.8678 0.1777
1997–1998 −0.3570 −0.5753 0.8235 0.1665
1998–1999 −0.9613 2.1212 0.8216 0.1745
1999–2000 −1.1351 −1.6154 0.9547 0.1684
2000–2001 2.1675 −1.0633 1.3470 0.1698
2001–2002 −0.1089 −0.6681 1.6271 0.1592
2002–2003 0.4029 −0.4216 1.7615 0.1632
2003–2004 −2.5862 1.7916 2.0176 0.1640
2004–2005 −2.9120 1.4851 2.1261 0.1655
2005–2006 1.2898 0.5654 2.4298 0.1819
2006–2007 −0.7740 −0.6377 2.8446 0.1785
2007–2008 3.5598 −1.4650 3.3702 0.1400
2008–2009 0.7530 −2.0529 3.0068 0.1755
2009–2010 −6.3848 0.1649 4.4141 0.3604
2010–2011 0.6289 −0.2408 4.1711 0.2843
2011–2012 3.6777 −0.4402 4.6280 0.1875
2012–2013 −0.2639 −1.3758 4.8502 0.0310
2013–2014 −3.0049 −0.7208 3.9341 0.3954
2014–2015 0.4785 −1.8671 3.9025 0.0894
2015–2016 5.7230 −4.6524 3.7770 0.4676
2016–2017 −3.9885 −3.0910 3.4594 0.4345
2017–2018 −3.4776 −1.8061 3.6610 0.0745
2018–2019 0.7083 −4.0573 2.8887 0.2747
2019–2020 −2.9752 −1.7928 0.7442 0.1979
2020–2021 −6.3741 2.9957 2.6882 0.0971

Table A9. The decomposition effect of decoupling in primary industry from 1990 to 2021.

Year ∆Cc ∆Ce ∆Cg ∆Cp

1990–1991 −0.0161 0.0167 −0.0007 0.0021
1991–1992 0.0013 −0.0047 0.0035 0.0020
1992–1993 −0.0141 0.0171 −0.0027 0.0017
1993–1994 0.0379 −0.0410 0.0028 0.0022
1994–1995 −0.0725 0.0752 −0.0029 0.0022
1995–1996 0.0161 −0.0195 0.0032 0.0022
1996–1997 0.0272 −0.0301 0.0029 0.0022
1997–1998 −0.0013 −0.0038 0.0030 0.0022
1998–1999 −0.0111 0.0120 −0.0005 0.0021
1999–2000 0.0145 −0.0069 −0.0083 0.0020
2000–2001 −0.0260 0.0102 0.0067 0.0019
2001–2002 0.0148 −0.0247 0.0049 0.0015
2002–2003 0.0258 −0.0264 0.0041 0.0014
2003–2004 −0.0073 0.0035 0.0043 0.0013
2004–2005 −0.0289 0.0239 0.0062 0.0013
2005–2006 −0.0011 0.0001 0.0041 0.0013
2006–2007 0.0008 −0.0065 0.0057 0.0011
2007–2008 0.1099 −0.0053 0.0070 0.0010
2008–2009 −0.0365 0.0267 0.0118 0.0015
2009–2010 0.0257 −0.0006 0.0137 0.0033
2010–2011 0.0350 −0.0231 0.0127 0.0027
2011–2012 −0.0209 −0.0021 0.0157 0.0016
2012–2013 −0.0097 −0.0085 0.0172 0.0002
2013–2014 −0.0189 0.0008 0.0143 0.0028
2014–2015 −0.0546 0.0210 0.0157 0.0006
2015–2016 0.0052 0.0292 0.0152 0.0030
2016–2017 −0.0064 −0.0594 0.0139 0.0027
2017–2018 −0.0016 −0.0230 0.0135 0.0004
2018–2019 −0.0008 −0.0147 0.0124 0.0016
2019–2020 0.0003 0.0037 0.0127 0.0013
2020–2021 −0.0262 −0.0103 0.0132 0.0006
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Table A10. The decomposition effect of decoupling in secondary industry from 1990 to 2021.

Year ∆Cc ∆Ce ∆Cg ∆Cp

1990–1991 0.7376 −0.7001 0.1899 0.1067
1991–1992 0.6219 −0.8359 0.4409 0.1072
1992–1993 −0.8526 0.1171 0.9744 0.0953
1993–1994 −0.2028 −0.1070 0.5180 0.1259
1994–1995 −0.6611 0.2417 0.6262 0.1274
1995–1996 0.5412 −1.0520 0.7163 0.1286
1996–1997 −1.4460 0.0792 0.7295 0.1290
1997–1998 −0.2485 −0.5825 0.7735 0.1222
1998–1999 −0.4695 1.4981 0.7128 0.1301
1999–2000 −1.0151 −1.3776 0.9259 0.1265
2000–2001 2.1105 −1.7465 1.2742 0.1256
2001–2002 −0.1678 −1.3955 1.5372 0.1134
2002–2003 0.4120 −0.5356 1.6680 0.1145
2003–2004 −2.5960 1.4862 1.8791 0.1162
2004–2005 −3.2193 1.5834 1.8874 0.1158
2005–2006 1.5596 0.4935 2.2001 0.1311
2006–2007 −0.3697 −0.6605 2.5010 0.1346
2007–2008 3.7497 −1.8297 3.3043 0.1091
2008–2009 0.8559 −2.0609 2.6330 0.1398
2009–2010 −6.2347 −0.4951 4.2302 0.2815
2010–2011 −0.0281 −0.2356 4.0181 0.2184
2011–2012 4.6466 −0.5107 4.1341 0.1494
2012–2013 −0.3234 −1.2572 4.4148 0.0255
2013–2014 −2.7051 −0.7157 3.4787 0.3257
2014–2015 1.7789 −2.6115 3.2611 0.0739
2015–2016 4.8531 −4.2986 3.2577 0.3871
2016–2017 −3.8366 −3.3465 2.7578 0.3531
2017–2018 −3.3950 −2.1436 3.0595 0.0587
2018–2019 0.4575 −3.3831 2.2363 0.2123
2019–2020 −2.5468 −2.2561 0.8632 0.1506
2020–2021 −5.1780 2.1485 2.1678 0.0727

Table A11. The decomposition effect of decoupling in tertiary industry from 1990 to 2021.

Year ∆Cc ∆Ce ∆Cg ∆Cp

1990–1991 −0.1805 0.1555 0.0467 0.0111
1991–1992 0.2250 −0.2631 0.0598 0.0112
1992–1993 −0.3975 0.3439 0.0766 0.0099
1993–1994 −0.0688 0.0155 0.0731 0.0131
1994–1995 −0.0669 0.0046 0.0820 0.0132
1995–1996 −0.0106 −0.0415 0.0717 0.0133
1996–1997 −0.0428 −0.1110 0.0741 0.0132
1997–1998 −0.0353 −0.0452 0.0611 0.0123
1998–1999 −0.0415 0.1973 0.0772 0.0134
1999–2000 0.0317 −0.1496 0.1036 0.0143
2000–2001 −0.0280 −0.2270 0.0904 0.0129
2001–2002 0.1173 0.4928 0.1151 0.0134
2002–2003 0.0250 0.0853 0.1539 0.0178
2003–2004 −0.0601 0.0781 0.1845 0.0186
2004–2005 −0.2243 0.5218 0.2161 0.0208
2005–2006 0.0176 −0.1906 0.2539 0.0229
2006–2007 0.3420 −0.0767 0.3230 0.0221
2007–2008 0.0434 −0.0578 0.3252 0.0176
2008–2009 0.0086 −0.0563 0.3453 0.0212
2009–2010 −0.0396 0.0499 0.4468 0.0477
2010–2011 0.2802 −0.3138 0.4037 0.0396
2011–2012 −0.4395 −0.1760 0.4981 0.0228
2012–2013 0.0204 −0.2649 0.4653 0.0033
2013–2014 −0.1341 −0.1116 0.3979 0.0426
2014–2015 −0.7781 0.3962 0.4319 0.0096
2015–2016 0.4424 −0.1069 0.3934 0.0499
2016–2017 0.0701 0.2789 0.4480 0.0519
2017–2018 −0.0500 0.2810 0.4809 0.0104
2018–2019 0.1065 −0.3538 0.4530 0.0416
2019–2020 −0.3497 0.0766 −0.0225 0.0312
2020–2021 −0.9758 0.7510 0.3919 0.0159
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Table A12. Efficiency values in overall, primary, secondary, and tertiary industries from 1990 to 2021.

Year Overall Primary Secondary Tertiary

1990 0.8071 1.0566 1.0116 1.0752
1991 0.8068 0.9240 0.7608 0.9082
1992 0.8390 0.9312 0.7788 1.0494
1993 1.0002 0.8659 0.9652 0.8460
1994 1.0014 1.0018 1.0068 0.8477
1995 1.0080 0.8155 0.9157 0.8885
1996 0.9775 0.8565 0.7298 1.0098
1997 0.9159 0.9386 0.5478 1.0032
1998 1.0219 1.0066 0.6469 1.0261
1999 0.8865 1.0021 0.5173 0.8409
2000 1.0122 0.9008 0.6622 0.8460
2001 0.9666 0.9170 0.6897 1.1138
2002 1.0046 1.0061 0.8299 0.7171
2003 1.0073 1.0116 1.0176 0.7548
2004 0.9505 1.0072 0.8356 0.7613
2005 0.9295 1.0082 0.9000 0.7512
2006 0.9052 0.9832 0.8145 0.8318
2007 0.9613 1.0157 0.8342 0.8318
2008 1.0099 0.8339 1.0076 1.0030
2009 0.9617 0.7965 0.8365 1.0061
2010 1.0160 0.7373 1.0082 1.0091
2011 1.0105 0.7066 1.0142 1.0064
2012 1.0071 0.7192 1.0059 1.0027
2013 1.0022 0.7103 1.0052 1.0019
2014 0.9533 0.6791 1.0035 1.0117
2015 0.8979 0.6464 0.8903 1.0192
2016 0.8456 0.5981 0.8683 1.0034
2017 0.8695 0.6830 0.9070 0.9705
2018 0.8742 0.7367 1.0030 0.9176
2019 0.9499 0.7894 0.9478 0.9513
2020 1.0207 0.8989 1.0207 1.0160
2021 1.0387 1.0567 1.0425 1.0201

Mean 0.9518 0.8700 0.8758 0.9388
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