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A B S T R A C T

The objective of this paper is to analyse the relationship between income inequality and environmental
innovation. To this end, we use the Economic Fitness and Complexity algorithm to compute an index of
green inventive capacity in a panel of 57 countries over the period 1970–2010. The empirical analysis reveals
that, on average, inequality is detrimental to countries’ capacity to develop complex green technologies. Using
non-parametric methods we further articulate this general finding and uncover interesting non-linearities in
the relationship between innovation and inequality.
1. Motivation and objectives

The objective of this paper is to explore empirically the relation-
ship between income inequality and environmental innovation. The
motivations for such an endeavour are manifold. These two global
challenges stem from different sources and manifest themselves in
different ways, but are arguably tightly connected. On the one hand,
the threat of climate-induced hazards calls upon systemic changes that
include, among other things, technological progress to accelerate the
development or refinement of sustainable products and processes (Hof-
fert et al., 2002; Pacala and Socolow, 2004; Popp et al., 2010). One of
the key analytical challenges in this debate concerns the identification
of the circumstances that facilitate the green transition. On the other
hand, empirical evidence indicates that, besides the widely-known neg-
ative distributional issues, income inequality can also hinder economic
performance (see e.g. Forbes, 2000; Barro, 2000). An intriguing, and
yet little explored, claim in this regard is that such a negative impact
depends on which portion of the income distribution is most affected
by inequality (Voitchovsky, 2005). Further, scholars have found evi-
dence of a vicious circle whereby innovation – not specifically green
– exacerbates inequality (see e.g. Aghion et al., 2018) in a way that
ultimately undermines the incentives to search for and develop new
technologies (Weinhold and Nair-Reichert, 2009). Moreover, income
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inequality and demand for environmental innovation exhibit similar
patterns since countries that are likely to suffer the strongest nega-
tive effects of environmental degradation are also among the poorest
(Mendelsohn et al., 2006; Bathiany et al., 2018), and often exhibit high
levels of income inequality (Roberts, 2001). Last but not least, and in
consideration of the above, our empirical analysis connects two current
policy debates concerning, on the one hand, socio-economic barriers
to the development of clean technology (Sovacool and Griffiths, 2020)
and, on the other hand, synergies and trade-offs associated with struc-
tural features of climate justice (Baek and Gweisah, 2013; Chancel,
2020).

Accordingly, the present paper fills some gaps in the analysis of the
intricate connections between inequality and green innovation. First,
most research focuses on the factors that favour the emergence of
environmental technology (see Barbieri et al., 2016 for a review) but
neglects the barriers that may prevent, or slow down, green innovation,
with just a few exceptions (e.g. Vona and Patriarca, 2011). The second
gap is that green technologies are often treated as a homogeneous
block, which contrasts with the huge diversity of goals they are de-
signed for (Perruchas et al., 2020), with the breadth of forms of
know-how involved (OECD, 2011) as well as the differential degree of
maturity that each has achieved (Barbieri et al., 2020a). Such a high
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diversity is a peculiarity of the green technology domain (Barbieri et al.,
2020b) and, obviously, affects the distribution of green innovation
capacity across countries (Sbardella et al., 2018) or regions (Barbieri
et al., 2022).

Bringing together these insights, we explore the relationship be-
tween domestic income inequality and capacity to generate green
innovation in a panel of 57 countries over the period 1970–2010. To
tackle these questions we propose a regression analysis on variables
drawn from different sources. The dependent variable, green innova-
tion capacity, is computed using the Economic Fitness and Complexity
(EFC) algorithm on patent data (Tacchella et al., 2012; Cristelli et al.,
2013). This recursive algorithm was originally designed to predict
economic growth from country export data, and has been subsequently
translated also to other domains, including innovation (Pugliese et al.,
2019) and industrial sectors (Sbardella et al., 2017). The EFC algorithm
has also been successfully applied to green innovation in a previous
contribution (Barbieri et al., 2022; de Cunzo et al., 2022; Sbardella
et al., 2018), while Mealy and Teytelboym (2020) applied the Economic
Complexity Index approach (Hidalgo and Hausmann, 2009) to study
green productive capabilities.

In a nutshell, the idea behind EFC is that the bipartite network that
connects geographical areas to the outputs they produce (e.g. patents
in the innovation domain, or exports in the trade domain) contains
information about the existing local capabilities. For instance, the
network that links countries to the (green and non-green) technologies
in which they patent is informative about which technologies require
the most advanced skills (i.e. have higher complexity), and which
countries have the most advanced endowment of innovative capabil-
ities (i.e. have higher fitness). By explicitly taking into account the
complex structure of country-technology interactions, EFC enables us
to differentiate countries not only according to the volume of green
patents (as we would do by looking e.g. at patenting intensity) but
also according to the composition of their patent portfolios. The main
explanatory variable, income inequality, is built using information on
net household income to calculate the Gini coefficient as well as various
income percentile ratios. To address the second research question, we
investigate whether the main result holds over the spectrum of green
technologies (from the least to the most complex ones) and GDP.

The first key finding, based on parametric regression, is that income
inequality exhibits significant negative correlation with country green
technology fitness.2 On average, countries with high levels of inequality
re also characterised by a lower level of green technology fitness. This
ntails that their technological capabilities connect with a narrower
pectrum of green technological domains that are, also, less complex in
elative terms. This holds for different measures of income inequality
ncluding the Gini coefficient and other income percentile ratios. The
econd key finding, based on non-parametric multivariate Nadaraya–
atson regressions (Nadaraya, 1964), is that the relationship between

nequality and green fitness is non-linear and, crucially, depends on
DP per capita levels. This brings to the fore a number of important
uances with respect to the first general finding, in short: (i) high
evels of inequality are especially detrimental for more complex green
echnologies; (ii) a certain amount of inequality appears to be necessary
or the development of complex capabilities related to green technolo-
ies, especially in high income countries; (iii) low inequality opens
p opportunities for countries with intermediate levels of per capita
ncome to specialise in relatively complex green technologies; (iv)
nequality is almost always associated with less complex technologies,
he arena where upper–middle income countries are plausibly more
roactive.

2 A negative relationship between a measure of complexity and income
nequality was previously obtained by Hartmann et al. (2017); however here
e focus on the green innovative competitiveness of countries, and employ

he EFC algorithm applied to green technological fields rather than the ECI
ndex (Hidalgo and Hausmann, 2009) based on product-level export data.
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The contribution of our study are manifold. First, we enrich the
scant literature on barriers to environmental innovations, by focusing
on income inequality. Second, our metrics of complexity implicitly
takes into account the heterogeneity associated with the exploration
that precedes these technologies. This resonates with the rationale of
policy interventions aimed at enhancing cross-fertilisation and bound-
ary spanning across domains on know-how. In the present paper we
discuss whether these actions need to be coherent with a more com-
prehensive economic policy that tackles inequality. This is also in line
with the emerging discourse concerning the interdependencies between
items of the Sustainable Development Goals agenda, wherein both en-
vironmental sustainability and inequality are prominent (e.g. Freistein
and Mahlert, 2016). Third, combining parametric and non-parametric
approaches adds important nuances to the analysis of the non-linear
relationship between inequality and green technological capacity. Pre-
vious work (e.g. Vona and Patriarca, 2011) finds that the link between
the development of green technologies and inequality is moderated by
the level of per capita GDP. Our non-parametric approach confirms this
and adds to it by providing new insights into the combination of GDP–
income inequality that exhibits stronger association with more complex
technological capabilities.

The remainder of the paper is structured as follows. Section 2
provides a review of the relevant literature followed in Section 3 by
details on the main data sources and variable construction. Section 4
presents the empirical analysis while the last section concludes and
summarises.

2. Theoretical background

2.1. The inequality–innovation nexus

Inequality and innovation are recurrent issues in the scholarly and
policy domains, and so is their mutual relation. One strand of literature
considers innovation as a determinant of inequality and emphasises the
role of unbalances in the structure of labour markets and of wages.
Technical change is known to have been traditionally biased in favour
of more skilled workers and thus to accelerate the replacement of
labour among the unskilled (Acemoglu, 2002) while skilled workers
enjoy wage premia. The combination of these two processes has ex-
acerbated inequality in several advanced economies, the US being
one of the most widely documented cases (see e.g. Katz and Murphy,
1992). Aghion et al. (2018) contribute to this literature by looking
at the distribution of income between labour and firm owners, and
the rate of innovation. Their work provides theoretical and empirical
support to the conjecture that innovation stimulates entrepreneurship
but also increases income inequality. Indeed, the number of patents
filed in US states is positively correlated to the top 1% income share.
However, their results do not hold when broader measures of inequality
are used, namely the Gini coefficient, Atkinson index, etc.

A second strand of literature investigates the extent to which in-
equality is a barrier for innovation. Here, the income distribution
affects the development and diffusion of technologies via different
channels. From a demand-side perspective, in a more equal society
innovation becomes more attractive thanks to the incentive for the
mass production of goods. Weinhold and Nair-Reichert (2009) point out
that, whereas the bottom and upper part of the distribution of income
are more likely to demand, respectively, essential and customised
products and services, middle class consumption generally concerns
more standardised manufacturing goods, which strongly rely on incre-
mental innovations. As observed by Sokoloff and Khan (1990), greater
equality triggers, among other things, the efficient use of resources,
scale economies and, in particular, the rate of inventive activities.
This implies that the mechanisms through which inequality affects
innovation are best observed from a complementary supply side per-
spective. Khan and Sokoloff (2001) suggest that a higher level of market
participation by population brings about opportunities for innovation.
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Over the past decades, the improvement of old products and the re-
organisation of production in the US agricultural and manufacturing
sectors were favoured by the high degree of involvement of the middle
class (Khan and Sokoloff, 2001). Moreover, broad market participation
is linked to higher institutional quality – especially the protection of
intellectual property rights – which made patenting simpler, cheaper
and more accessible to US population in those years compared to
other countries. The anecdotal evidence provided by these studies is
confirmed by Weinhold and Nair-Reichert (2009), who investigate the
direct role of the middle class share on patenting activities. Their
insights indicate that a more equal income distribution and strong
intellectual property rights protection positively affects patent filing by
residents.

The foregoing debate has rarely touched upon environmental in-
novation but there are grounds to believe that a broadly similar set
of mechanisms are in place. The public good nature of environmental
quality improvements entails that inequality is perceived as influencing
innovative activities aimed at tackling local environmental problems,
rather than global ones (e.g. urban PM10 reduction vs. global emis-
sions). According to the demand-driven innovation approach, two main
channels exist. The first is the so-called ‘‘pioneer consumer’’ effect
whereby high-income consumers increase the demand for initially more
expensive green products. In so doing they stimulate the production
of this type of goods, thus leading to price reduction which, even-
tually, enables low-income consumers to add these products to their
basket. The second effect is ‘‘consumption polarisation’’, in which case
excessive income difference between high and low income consumers
reduces the potential externalities just mentioned. The seminal study
by Vona and Patriarca (2011) points out that the relationship between
inequality and the development of green innovative goods is highly
non-linear: at low levels of per-capita income the pioneer consumer
effect prevails, whereas at high level of per-capita income the reverse
occurs. They also explore this empirical relation on a panel of OECD
countries and find that inequality appears less detrimental for innova-
tive activities at the beginning of their life-cycle, which is in line with
the pioneer consumer effect.

Add to the above that recent policy debates call explicitly attention
to synergies and trade-offs associated to the development context in re-
lation to climate justice. Maximising synergies and avoiding trade-offs
still entail significant challenges for developing countries, for vulnera-
ble populations and for contexts with limited institutional, technolog-
ical and financial capacity (Adger et al., 2003; Cappelli et al., 2021).
Understanding the extent to which structural features such as inequality
hamper capacity building has therefore become a guiding principle to
assist the design of policy that tackles environmental and social justice
priorities in a symbiotic, rather than detached, fashion (IEG, 2015;
Vona, 2021).

2.2. The complexity of technological developments

The channels through which inequality affects innovation may lead
to heterogeneous effects in relation to the type of technology under
analysis (i.e. green vs. non-green) and/or the socio-economic conditions
of the attendant countries (e.g. high, middle, low income countries).
This research, however, neglects the characteristics of knowledge and
how they moderate the inequality–innovation relationship. This gap is
significant with regards to our understanding of green technologies.
Using a set of patent-based indicators Barbieri et al. (2020b) find that
green patents exhibit higher technological breadth, novelty and impact
relative to non-green technologies. This implies higher costs and more
uncertain knowledge recombination process which, in turn, leads to a
potential underinvestment in their development, therefore calling for
policy intervention to enable cross-fertilisation and boundary spanning.
Further, a study on the diffusion of green technologies across countries
226

by Sbardella et al. (2018) emphasises that dealing with more complex
portfolios of green technologies requires more advanced invention com-
petences. From this it follows that, on average, high-income countries
be endowed with more developed capabilities and thus be more likely
major inventors of complex technologies. This resonates with recent
findings on the spatial distribution of complex activities, taken as
a whole and not necessarily related to specific (i.e. environmental)
domains (Balland and Rigby, 2017).

In the present study, we investigate whether and to what extent
the correlation between innovation and inequality varies according to
the complexity of the country’s portfolio of green technologies. That
is, we explore whether inequality represents a barrier to innovation
in countries where the difficulty to produce different kinds of green
knowledge is higher. By recalling the mechanisms depicted above,
higher inequality provides less incentives to engage in more complex
green innovative activities via a demand effect. In order to identify
whether the pioneer consumer effect or the consumption polarisation
mechanism dominates, it is crucial to account for the efforts spent
in developing less and more complex green technologies. On the one
hand, we expect inequality to be associated with less complex green
technological capabilities due to the lower incentive to develop more
complex technological solutions which require inventors to face higher
cost and uncertainty in the knowledge generation process. On the
other hand, inequality may represent a barrier also to more complex
technologies. Such a relationship likely depends on the level of GDP.
That is, a certain level of inequality may be necessary to provide
the incentive to develop more complex capabilities, in line with the
pioneer consumer effect. However, extremely high levels of inequality,
especially in high income countries, may negatively affect the economic
returns of more complex capabilities due to a lower demand effect.

3. Data and variable construction

For this study we create a panel of up to 57 countries for the period
1970–2010. The main variables measure green innovation capacity,
income inequality and country characteristics. The choice of the time
periods is contingent upon the availability of data, primarily on green
patents and income inequality. We rely on a variety of sources that are
described in greater detail below.

3.1. The economic fitness and complexity approach

The main dependent variable, country green technology fitness,
is constructed by combining the raw patent data extracted from the
PATSTAT database of the European Patent Office (EPO) with specific
information about environment-friendly technologies collected by the
OECD in the environment-related catalogue (ENV-TECH) (Haščič and
Migotto, 2015). PATSTAT aggregates tens of millions of patent docu-
ments from over one hundred national and regional patent offices. They
report, for each patent, the date of filing, the country of residence of
inventors and applicants, the patent family (i.e. the group of patents
that share the same priority filing and can be assumed to refer to the
same invention), and a set of standard technology codes that classify
the fields of technology in which the patent application introduced
innovations with respect to the existing prior art at the time of filing.
We exploit the ENV-TECH catalogue to collect patents that are relevant
for green innovation. This allows us to partition the technological
space at all levels of aggregation in a set of green classes and a set
of non-green classes.

We exploit the recursive nature of the EFC algorithm, which defines
the technological fitness of a country as a function of the complexity
of the technologies in which it innovates and the complexity of a
technology as a function of the fitness of the countries that produce
them. In so doing we are able to consistently rank the elements of both
sets and thus to tell more and less complex technologies apart. The EFC
algorithm is part of a larger, and growing, literature based on the ap-

plication of methodologies inspired by complexity science to a diverse
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Fig. 1. Construction of a binary data matrix for period y. Panel (a): each patent family is attributed a unit of weight, which is equally split among all combinations of inventor
countries and technological codes included in patent applications belonging to the family which were filed during period y. Panel (b): a weighted matrix (W) is built in which
rows correspond to countries and columns correspond to technology codes; every (country, technology) pair is attributed the corresponding sum of patent family shares. Panel (c):
W is binarized creating matrix M, which is then fed to the EFC algorithm.
Fig. 2. Country-Technology matrix (𝑀𝑐,𝑝) relative to the 2008–2012 time window. The rows and columns are ordered using the EFC algorithm. Each row corresponds to one of
the 145 countries for which we have patent data, with black dots highlighting the technological areas to which each country is linked; fitness decreases from top to bottom. Each
column represents a technology field; complexity increases from left to right. The matrix accounts for the full technological spectrum, i.e. all 692 green and non-green technology
codes included in the analysis. The vertical green lines highlight the position in the complexity ranking of green technologies as defined by the 36 2-digit ENV-Tech codes listed
in Table A.1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
array of empirical issues. These include macroeconomic forecasting
(Hidalgo and Hausmann, 2009; Tacchella et al., 2018), the analysis
of the evolution of the productive structures of nations (Hausmann
et al., 2007; Hidalgo et al., 2007; Zaccaria et al., 2014), the relation
between complexity and inequality (Hartmann et al., 2017; Sbardella
et al., 2017), the assessment of capability accumulation and the study
of interactions between capabilities in shaping knowledge creation
as well as technological progress (Pugliese et al., 2017b, Napolitano
et al., 2018). Indeed, it has been shown that technological capabilities
are generally nested Napolitano et al. (2018), Pugliese et al. (2019);
this implies that countries with a very specialised R&D output will
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mostly innovate in more ubiquitous (and hence mundane) technolog-
ical fields.3 To illustrate, imagine a breakthrough in human mobility
determined by electric self-driving vehicles (henceforth, technology Z).
Let us assume that the above hinges around two key technologies:
effective machine learning algorithms (tech. X) and reliable energy-
dense batteries (tech. Y). From the EFC perspective, Z is more complex
than its building blocks, X and Y, if the set of countries that innovate

3 A corollary is that countries that are able to advance knowledge in more
complex (rare) fields, and thus achieve higher fitness, are able to innovate
across the technological spectrum.
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Fig. 3. Snapshot of the geographic distribution of the Green Fitness Ranking across countries. Colour coding: dark green (top of the ranking), light green (middle) to brown
(bottom). White: no data available. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 4. Time evolution of the Complexity Ranking of green technologies (5-year time-windows). Higher ranked (more complex) technologies at the top. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
in Z is smaller than the set of countries that innovate in X or Y.4 This
makes sense intuitively, since one might expect Z to be developed with
higher probability in countries that also have capabilities to innovate
in X and Y.

As mentioned in Section 1, to apply the EFC algorithm to our data
and obtain a measure of the fitness of countries, we need to represent
the countries and the technologies in which they innovate at a given
point in time as a bipartite graph. To this aim, we assume that every
patent family is an invention and assign it one unit of weight. For
each year, we split active patent families equally among all combina-
tions of technology code and inventor country that contribute to it.
This way, we obtain a measure of the observed innovation intensity

4 Notice that nothing is said about the intricacy of the inventions that
rely on technology Z. In fact, a modern internal combustion engine has a
far greater number of moving parts and components than an electric engine.
Nevertheless, electric car technology could be more complex if less countries
are well-equipped to develop it.
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of each country in each technological field that we summarise in a
weighted matrix W (see Fig. 1 for an example). We then binarize
the weighted matrix W filtering it through the index of Revealed
Comparative Advantage (Balassa, 1965)5 and obtain M such that:

𝑀𝑐,𝑡(𝑦) =

⎧

⎪

⎨

⎪

⎩

1 if 𝑊𝑐,𝑡
∑

𝑡′ 𝑊𝑐,𝑡′
>

∑

𝑐′ 𝑊𝑐′ ,𝑡
∑

𝑐′ ,𝑡′ 𝑊 𝑐′ ,𝑡′

0 otherwise.
(1)

The binary matrix M, which links countries to the technologies in
which they produce more than their fair share of patents, is then fed to

5 The sparsity of the data matrices ensures that results are robust to the
choice of the binarization strategy.



Structural Change and Economic Dynamics 63 (2022) 224–240L. Napolitano et al.
Fig. 5. Time evolution of the green fitness of countries (5-year time-windows). Higher ranked (higher fitness) countries at the top. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
the EFC algorithm, which is defined as follows:

⎧

⎪

⎪

⎪

⎨

⎪
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𝐹 (𝑛)
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𝑡 =
�̃�(𝑛)

𝑡

⟨�̃�(𝑛)
𝑡 ⟩

�̃�(𝑛)
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∑

𝑐 𝑀𝑐,𝑡
1

𝐹 (𝑛)
𝑐

, 𝐹 (𝑛)
𝑐 =

𝐹 (𝑛)
𝑐

⟨𝐹 (𝑛)
𝑐 ⟩

(2)

with initial condition:
∑

𝑡
𝑄(0)

𝑡 = 1 ∀𝑡. (3)

The key outputs of the recursive EFC algorithm are the Fitness
of countries (F) and the complexity of technologies (Q), which are
simultaneously determined by the network connections encoded in the
input matrix, M. It is worth noting that, unlike e.g. trade, patenting
activity does not produce a regular flow of output. Hence, yearly
patenting counts can be rather noisy, especially at higher levels of gran-
ularity. This can produce fluctuations in the binary country-technology
networks which are not linked to dynamics of the underlying capability
structure. For this reason, in our analysis we define 𝑊𝑡 on a 5-year time
window comprising the closed interval [𝑡, 𝑡 + 4]. This allows striking a
good balance between noise and number of observations To clarify,
𝑊𝑡(𝑐, 𝑡) is the average patenting by country t in technology t over
the time window. This choice carries over to 𝑀𝑡 and to the Fitness
and Complexity rankings. The Fitness of a country (𝐹𝑐) is the sum
of the complexity of the outputs to which it is linked,6 while the
Complexity of a technology (𝑄𝑡) is a non-linear function of the fitness
values of the countries that include that technology in their baskets.
Non-linearity plays a crucial role in this context because the main
term in defining the complexity of a technological field is the least fit
country that innovates in that field. In other words, the Complexity of

6 Notice that we can meaningfully apply the same definition to a subset
of the outputs. To clarify: the complexity of all technologies connected to a
country determine its Technological Fitness; and the complexity of the Green
Technologies linked to a country determine its Green Fitness.
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any technology is limited by the lowest country Fitness that enters its
computation.7 The underlying rationale is that the fitness of a country
captures the competitive advantage that the underlying endowment of
capabilities accrues. The more diverse the set of capabilities, the more
complex is the technology space available to the country. Conversely, a
country with low fitness has less capabilities and, therefore, is limited
to less complex technological domains. Depending on the structure of
the input matrix, the EFC algorithm is known (Pugliese et al., 2016)
to converge to zero fitness and zero complexity at different speeds for
different countries and technologies respectively. However, this is not
an issue because it is always possible to define a consistent ranking
along both dimensions. For this reason, our main dependent variable
is the fitness ranking and not the fitness scores of countries. The same
is true for technological complexities, which we employ to tell more
complex technologies apart from less complex ones in the second part
of the empirical analysis.

Fig. 2 displays a binary country technology-matrix, in which rows
and columns have been ordered using the EFC algorithm. Rows rep-
resent countries and are arranged by decreasing fitness from top to
bottom, while columns are ordered to reflect increasing technological
complexity from left to right. The columns in the matrix represent the
full spectrum of CPC and ENV-TECH codes available in the data, and

7 It is worth noting that, depending on how Fitness is computed, it can
be more or less sensitive to the country size (in economic terms). Indeed,
we can in principle define an extensive measure of Fitness (employing 𝑊
instead of 𝑀 in Eq. (2)). However, employing M (which is binary and, more
importantly, filtered via Revealed Comparative Advantage) allows to compute
the ore conventional intensive Fitness metric, which allows to substantially
reduce the effect of country size. In a nutshell, though larger economies
produce higher volumes in general, their size will work against them when it
comes to determining their fair share in a specific sector. Moreover, Tacchella
et al. (2012), Cristelli et al. (2013) showed that computing Fitness via 𝑀
produces a metric that correlates well with GDP per capita, while computing
Fitness via W yields a metric that correlates well with GDP. In this paper we
employ the intensive Fitness metric, which is far less sensitive to the effect of
country size.
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Fig. 6. The three-dimensional relation between different measures of income inequality – namely the logarithm of Gini index, and the 90:10, 80:20, 70:30 and 60:40 income
decile ratios – on the 𝑥-axis (5-year time-windows), the logarithm of GDP per capita on the 𝑦-axis, and the ranking of green fitness on the 𝑧-axis (5-year time-windows). Each
colour map represents the expected value of green fitness given the income inequality measure and GDP per capita and is obtained with a non-parametric Nadaraya–Watson kernel
estimation by pooling all countries and years in our database. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
the ordering of rows reflects technological fitness, not green fitness. The
matrix thus ordered displays a characteristic nested structure in which
higher fitness countries tend to be more diversified and lower fitness
countries are linked to a subset of the fields to which higher-fitness
countries are connected (see Tacchella et al., 2012 for country-product
matrices and Sbardella et al., 2017 for region-industrial sector matrices
displaying a similar nested structure). Consequently, the probability
of having a connection with rare technological fields, i.e. those which
require the most advanced capabilities, increases as fitness increases.

Once we have computed the complexity of all technologies, and
hence also the Technological Fitness of countries, via Eq. (2), we
can also compute their Green Technological Fitness. To this aim, we
apply the fitness formula only to the ENV-TECH codes (highlighted
by the vertical green lines); this way associate each country to the
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complexity of all the technologies to which it is linked.8 The vertical

8 Notice that this reflects an exogenous approach to Green Technological
Fitness, whereby we take into account the full technological spectrum and
establish the complexity of green technologies also relative to non-green
technologies. This implies that when we compute GTF from the complexity
of the subset technologies that are tagged as green, we are not employing all
the information available in 𝑀 . Consequently, if we ordered the rows of 𝑀
based on GTF, the footprint of complexity in the technological space defined by
𝑀 would be less evident. To produce a nested matrix employing an ordering
based on GTF, we would need to take an endogenous approach to green fitness
like Napolitano et al. (2018) and define 𝑀 as the adjacency matrix of the
network linking countries only to green technologies. Though valid in general,
the endogenous definition would make the comparison between technological
fitness and GTF less direct. For this reason, the exogenous approach is more
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Fig. 7. Estimation errors of the green fitness colour-maps in Fig. 6. The plots are built with the same data as Fig. 6. Two layers of information are represented in this figure.
(1) In the black and white scale, the standard error of the green fitness ranking mean estimated through the Nadaraya–Watson regression with Gaussian kernel. White indicates
a standard error of 2% or less, and black a standard error of 4% or more. (2) In the green shades, the iso-lines of the green fitness ranking levels (lowest in light green, highest
in dark green). The plot is obtained by pooling all countries and years comprising our database. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
green lines highlight the position in the complexity ranking of all
green technologies, which are spread out over the entire spectrum. This
means that both low- and high-complexity green technologies exist.

Last but not least, Fig. 3 shows the distribution of inventive efforts
across countries as captured by the fitness ranking of countries. This
broad brush picture indicates that environmental innovative activities
are relatively more intense (brighter green) in North America, Europe,
Russia, China, Japan, and Australia, while countries in Latin America
and in the Middle East are in the mid to bottom part of the ranking
(brown to red).

adequate for our purposes. We thank an anonymous referee for prompting
us to clarify this point about highlighting the nested structure of 𝑀 via the
complexity algorithm.
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3.2. Income inequality and other dimensions of interest

The main explanatory variable in our regression analysis is income
inequality. To build this, we retrieve information on household net
income from the World Income Inequality Database (WIID),9 which
covers most of the countries over the period 1867–2012. For the
purposes of the present paper, we compute five measures of income
inequality for each country. The first is the Gini coefficient, a widely
used proxy of inequality with wide geographical data coverage. Since
a major goal of this paper is to look into differences between various
portions of the income distribution, we also extract from the WIID

9 https://www.wider.unu.edu/project/wiid-world-income-inequality-
database (Last access: 28 January 2019).

https://www.wider.unu.edu/project/wiid-world-income-inequality-database
https://www.wider.unu.edu/project/wiid-world-income-inequality-database
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Fig. 8. Gini index colour map with country trajectories. We superimpose on Fig. 6
the trajectories of Brazil, China, Portugal, the Netherlands, and the US in the Gini
index-GDP per capita plane. The arrows point in the direction of time and show the
starting, middle and final year for which the country in question presents a Gini index
observation (1981, 1998, 2012 for Brazil, 2002, 2008, 2012 for China, 1977, 1996,
2012 for the Netherlands, 1980, 2005, 2011 for Portugal and 1971, 1992, 2012 for the
US), where their x-values represent, when possible, 5-year rolling averages of the Gini
index. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

information on deciles of disposable income, and compute the following
ratios: ninth to first decile (90:10); eighth to second (80:20); seventh
to third (70:30); sixth to fourth (60:40). We envisage that this ample
selection of variables affords a more nuanced understanding of the
extent of different levels of inequality across the board.

To account for country characteristics, we include a battery of
variables into our empirical analysis, namely: GDP per capita (source:
World Bank10), the percentage of population with tertiary literacy
(source: Barro-Lee11) and population density (source: World Bank.12.)
To ensure coherence across the data, we build averages over five-year
intervals of all the variables under analysis. While this is dictated by the
format of the data on literacy, which is only available at that frequency,
taking averages over periods allows us to account for the fact that green
innovation, inequality, and the other dimensions under analysis change
slowly over time.

4. Analysis

4.1. Economic fitness, green innovation and inequality

Fig. 4 provides details about the evolution over time of the ranking
of green technologies based on their complexity. To ensure consistency
with the rest of the empirical analysis, the rankings are computed over
5-year time windows, with the first observation covering the period
1970–1974 and the last observation covering the 2005–2009 window.
Technological complexity decreases from top to bottom. The left and
right y-axes report the complexity rankings relative to the first and last
time window respectively. For ease of visualisation, the y-labels and
plot lines are coloured to reflect their position in the oldest ranking. The

10 https://data.worldbank.org/indicator/NY.GDP.MKTP.CD (Last access: 28
January 2019).

11 http://www.barrolee.com/data/full1.htm (Last access: 28 January 2019)
12 https://data.worldbank.org/indicator/EN.POP.DNST (Last access: 28 Jan-

uary 2019)
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mix of the label colours along the right 𝑦-axis shows that the complexity
of technologies has varied substantially over the time period.

In the upper third of the ranking are domains that have maintained
their leadership, namely Enabling Technologies for GHG Mitigation in
Waste Water Treatment and Waste Management [8.3], Environmental
Monitoring [1.5], and Rail Transport [6.2], as well as technological
fields that have caught up, in particular Road Transport Technologies
[6.1], Nuclear Energy [4.4], and Technologies for the processing of miner-
als (used in industrial production, e.g. cement, glass) [9.4].13 All these
instances of technologies that have worked their way up the ranking
speak to the extent to which new and advanced capabilities have kept
pouring into the attendant fields since the 1970s. In contrast to these,
there are domains that have lost prominence, for example Supply-Side
Technologies for Water Availability [2.2], or Enabling Technologies for
GHG Mitigation in the Production or Processing of Goods [9.8]. Further
notice that, on the one hand, transitions from low- to high complexity
can be rather abrupt, as in the case of Road Transport Technologies [6.1]
while, on the other hand, movement along the ranking need not be
monotonic as shown by Supply-Side Technologies for Water Availability
[2.2] and Energy Generation From Fuels Of Non-Fossil Origin [4.2], which
display a highly variable degree of complexity. On the whole, this
ranking resonates with empirical studies on the life cycle of green
technology, whereby established fields like Renewable Energy Generation
[4.1] are in the bottom third reflecting how mature the attendant
knowledge base is and, relatedly, how ubiquitous is that technology.
In contrast, Capture/Disposal of GHG other than Carbon Dioxide [5.2] is
still at relatively early stage of development, and thus exhibits higher
complexity and less ubiquity (see Barbieri et al., 2020b).

Fig. 5 builds on the former technology ranking and plots the time
trajectory of all the countries included in the analysis along the fitness
ranking. Similar to Fig. 4, each observation refers to 5-year intervals
starting in 1970, country labels are coloured according to the corre-
sponding fitness ranking in the first window and countries with higher
fitness are displayed at the top. Notice that, contrary to technologies,
country ranking positions are more stable and that where they take
place changes in ranking are less abrupt. This is intuitively plausible
considering that while imitation in mature fields of technologies can
lead to quick catching up by capability-poor countries, the global set of
capabilities that defines a country’s technological reach is the result of
a long-term accumulation process, which can therefore generate some
inertia in the fitness values and the relative performance. Two notable
exceptions in our sample are Portugal (PT), the United Arab Emirates
(AE) and Panama (PA), all of which display relatively high variability
in the central time periods with the first two leaping to the top all at
once between 2000–2004 and 2005–2009 and the latter stabilising at
the bottom. Further notice that the relative stability of the green fitness
ranking does not mean that no long-term trends can be observed. For
example, Israel (IL) and the United States of America (US) start high up
in the ranking and constantly drop, while China (CN) gradually reaches
the top. Note in passing that some lower fitness countries are not always
present in the plot, but appear only when their first green patents are
recorded.

4.2. Parametric approach

In this section, we explore the relationship between environmental-
related technological complexity and income distribution by means
of parametric regression analysis. The empirical strategy investigates
whether there is a significant correlation between countries’ green
fitness and income inequality over the period 1970–2010. We estimate
the following empirical model:

𝐺𝑟𝑒𝑒𝑛𝐹 𝑖𝑡𝑛𝑒𝑠𝑠𝑖𝑡 = 𝛼 + 𝛽𝐼𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦𝐴𝑖𝑡 + 𝛾𝑋𝑖𝑡 + 𝜎𝑖 + 𝜏𝑖𝑡 + 𝜀𝑖𝑡

13 The full list of ENV-TECH Green Technologies codes and labels is available
on Table A.1 in Appendix A.

https://data.worldbank.org/indicator/NY.GDP.MKTP.CD
http://www.barrolee.com/data/full1.htm
https://data.worldbank.org/indicator/EN.POP.DNST
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Table 1
Parametric regression results — Green technology fitness.

(1) (2) (3) (4) (5)

Gini (ln) −8.748**
(3.629)

90:10 −0.126**
(0.0492)

80:20 −0.424***
(0.125)

70:30 −4.143
(3.192)

60:40 −7.929
(8.894)

GDP pc 2.956*** 2.920*** 2.892*** 2.791*** 3.012***
(0.698) (0.888) (0.860) (0.962) (0.915)

Pop
Density

−0.0607 0.00424 −0.0158 −0.0182 −0.0493

(0.0756) (0.205) (0.185) (0.203) (0.198)
Schooling 0.0736 −0.0413 0.0616 0.00539 0.0712

(0.134) (0.212) (0.125) (0.222) (0.161)
Country
FE

Yes Yes Yes Yes Yes

Time
trends

Yes Yes Yes Yes Yes

𝑅2 0.593 0.614 0.632 0.601 0.606
Obs. 273 199 207 198 207

Notes: Dependent variable is mean Green Technology Fitness per country per year. Country fixed effects (FE) and country-specific time trends
are included in the model. Robust standard errors in parenthesis. * 𝑝 < .1, ** 𝑝 < .05, *** 𝑝 < .01.
Table 2
Parametric regression results — Total technology fitness.

(1) (2) (3) (4) (5)

Gini (ln) −6.074
(4.784)

90:10 −0.0423
(0.0579)

80:20 −0.135
(0.143)

70:30 4.393
(5.650)

60:40 9.383
(12.67)

GDP pc −0.582 0.800* 0.601* 1.282 0.789*
(1.051) (0.459) (0.334) (0.908) (0.458)

Pop
Density

1.153 −1.012 −0.982 −1.081 −1.012

(1.015) (0.944) (0.917) (1.010) (0.948)
Schooling −0.592 0.322 0.215 0.345 0.149

(0.503) (0.415) (0.306) (0.444) (0.281)

Country
FE

Yes Yes Yes Yes Yes

Time
trends

Yes Yes Yes Yes Yes

𝑅2 0.184 0.618 0.621 0.620 0.622
Obs. 280 204 213 203 213

Notes: Dependent variable is mean total technology Fitness per country per year. Country fixed effects (FE) and country-specific time trends
are included in the model. Robust standard errors in parenthesis. * 𝑝 < .1, ** 𝑝 < .05, *** 𝑝 < .01
i
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where the dependent variable, 𝐺𝑟𝑒𝑒𝑛𝐹 𝑖𝑡𝑛𝑒𝑠𝑠, is country green tech-
ological fitness, described in Section 3. Further, we articulate the
elationship between country green fitness and income inequality by as-
essing whether the results hold for the entire spectrum of technologies
r the finding is peculiar to green technologies. The main independent
ariable is within-country income distribution (𝐼𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦) measured
sing alternative indicators (𝐴) such as the Gini coefficient or the decile
atios 90:10, 80:20, 70:30 and 60:40. As mentioned, given the low
ace at which inequality evolves over time (Quah, 2001), we employ 5-
ear time windows. The model we estimate also includes country fixed
ffects (𝜎) and a set of controls such as population density, per capita
DP, and a measure of schooling (i.e. the percentage of population
ith tertiary literacy) (𝑋). Finally, country-specific time trends (𝜏) are
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ncluded to control for unobservable heterogeneity that varies over time
n each country.14

Table 1 shows the results of the model estimation. The main finding
s that there is a negative and significant association between a coun-
ry’s income inequality and green fitness. This means that countries
ith higher levels of inequality reduce the incentives to develop more

omplex capabilities related to green technology. According to the liter-
ture, higher complexity is associated with higher costs and uncertainty

14 Table A.2 in Appendix D we also show the results of a model estima-
tion which does not include country fixed effects and time trends. In this
way results are comparable with the following analysis that investigates the
relationship between inequality and green fitness in a non-parametric way.
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in the development of new technologies. In this context, inequality
plays a pivotal role by exacerbating the expected returns from innova-
tive activities. Such an association is confirmed when we use the Gini
index and the income distribution ratios 90:10 and 80:20 as a proxy for
income inequality. It is worth noting that this result takes into account
the intensity of the inventive activities in each technological domain
and the complexity of technological fields. In addition, the results
show a positive correlation of the green fitness variable with a proxy
for human capital (i.e., Schooling) and a negative association with
population density — although these two variables are not statistically
significant. Finally, GDP per capital shows a positive and significant
correlation with green technology fitness: as expected richer countries
perform better in terms of investments in environmental-related R&D.

Further, we explore whether this association holds also when taking
into account fitness computed on the entire technological spectrum
instead of only on green technologies. Table 2 shows that the coeffi-
cients of the inequality measures are not statistically significant when
we consider all the technologies developed in a specific country. This
suggests that inequality may act as a barrier especially when green
technological capabilities are concerned, and that this effect might be
due to the higher heterogeneity of the knowledge base of this group
of technologies (Barbieri et al., 2020a). However, non-linearity may
also affect these findings. In the next section we explore these patterns
through a non-parametric approach that enables us to observe this
relationship at each level of inequality, green fitness, and GDP per
capita.

4.3. Non-parametric approach

In this section, we explore the relationship between inequality
and green technology fitness using a non-parametric approach. Fig. 6
depicts a graphical tool to visualise qualitatively the joint relation
between green technological capabilities as proxied by green fitness,
GDP per capita, and the proposed measures of income inequality (Gini
coefficient, the 90:10, 80:20, 70:30 and 60:40 income decile ratios),
where the variables employed are built in the same fashion as in
our parametric approach presented in Section 4.2. In particular, each
panel of Fig. 6 represents a colour-map of the relation between income
inequality on the x-axis, the logarithm of GDP per capita on the 𝑦-
axis, and a non-parametric estimate of the green fitness ranking on
the 𝑧-axis. The values of the latter are captured by different shades
of green such that the darker the green the higher the fitness. To
build this figure, we pool all the countries and years in our panel
and take 5-year moving averages of the aforementioned variables to
ensure coherence across the data. The colour-maps are obtained via a
multivariate Nadaraya–Watson regression (Nadaraya, 1964), a contin-
uous non-parametric method, with a Gaussian kernel. In practice, we
estimate the conditional expected value of the dependent variable, the
green fitness ranking, given the independent variables, GDP per capita
and income inequality, by calculating locally weighted averages of the
green fitness ranking, where the weights are Gaussian kernels.

Fig. 7 shows the standard errors of the Nadaraya–Watson means.
Herein, the darker areas correspond to a standard error of 4% or above,
while the white ones to a standard error of 2% or less. To allow
comparability, the iso-levels of the green fitness ranking estimations are
superimposed on the plots in Fig. 6. In the upper portion of the plot,
irrespective of their income inequality level, countries with high levels
of per-capita income display generally high levels of green fitness. This
is not surprising considering that high-income countries are more likely
endowed with more developed capabilities, therefore income inequality
is likely to constitute less of a barrier to producing knowledge in
complex technologies.

An interesting feature of the plots in Fig. 6 is the diagonal movement
of colour, which hints at an interplay between income inequality and
GDP per-capita in contributing to the green fitness ranking. The figures
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suggest that there is a threshold of GDP per-capita below which it is
unlikely that a country will be able to develop a sufficient number of
complex technologies to obtain high green fitness. Countries located
in the upper left corners of the plots in Fig. 6 are characterised by
high GDP per capita and low income inequality; they are therefore
expected to achieve the highest positions in the green fitness ranking.
Low income inequality lowers such threshold and allows also countries
with intermediate levels of per capita income to develop the capa-
bilities necessary to increase their capacity to innovate in relatively
complex green technologies and thus achieve intermediate levels of
green fitness.

Put otherwise, a country’s wealth might not be a barrier to devel-
oping advanced competencies for environmental innovation insofar as
income inequality is not too high. This offers a qualitative hint at the
fact that a more equal distribution of income matters for unleashing
innovation capacity among both low- and mid-level income countries.
Hence, high income inequality appears to be a barrier for innovation
capacity among both low- and mid-level income countries. Notice that
the evidence is consistent when we take as measures of inequality the
intermediate income decile ratios, the top and bottom ratios, and the
Gini coefficient. The only apparent exception is the 90:10 ratio case;
however, looking at the standard error of the estimation in Fig. 5, we
see that the significant regions of the green fitness ranking estimation
are placed only in the left and in the upper–middle quadrants of the
r90:10-𝑙𝑜𝑔(𝐺𝐷𝑃𝑝𝑐) plane, where the colour pattern is consistent with
that of the other inequality measures. This suggests that the dark green
region in the upper right portion of the 90:10 graphs is mostly an arte-
fact of the non-parametric estimation technique and is not populated
by actual data points as we do not find in our data-set countries with
high levels of per capita GDP and intermediate 90:10 ratio values.

To provide some context on these maps, we superimpose on the
basic terrain of Fig. 6 the trajectories of Brazil, China, Portugal, the
Netherlands, and the US (Fig. 8). These trajectories are built selecting
three points in time – the starting, middle and final year for which the
country in question presents an observation for the Gini index – and
each is composed of two arrows pointing in the direction of time. As the
World Income Inequality Database contains a large number of missing
points, especially for emerging and developing economies, the three
years represented for each country are different. In particular for Brazil
we consider the triplet (1981, 1998, 2012), for China (2002, 2008,
2012), for the Netherlands (1977, 1996, 2012), for Portugal (1980,
2005, 2011) and for the US (1971, 1992, 2012). The x-values of the
arrows are built using 5-year rolling averages of the Gini index, with
the exception of China, for which, given the short time-span and the few
observations provided between 2002 and 2012, a 2-year rolling average
is considered. Not only China presents fragmented observations, but
also the most problematic point is its Gini index starting observation
year, that unfortunately does not allow us to appreciate in its entirety
China’s increasing Green Fitness trajectory — starting at the middle of
the ranking at the end of the 1970s and reaching the top with a 0.9
value in 2012 –, as by 2002 it had started to climb the Green Fitness
ladder and already showed a high position in the ranking. This is not
clearly visible in the plot, the colour map is in fact the result of a
non parametric estimation and the colour distribution is determined by
localised averages of the points present in a small region of the plot and
China, being an unicum, displays high Green Fitness, but GDPpc and
Gini index values comparable to those of different lower Green Fitness
countries. Therefore, while when analysing the movement of countries
the Fitness-GDP plane, as is customary in the Economic Complexity
literature (Cristelli et al., 2013; Tacchella et al., 2012), it is possible
to observe the diagonal trajectory of China, whose higher fitness than
per capita GDP has been interpreted as a source of growth potential
and possibility for a ‘‘lateral escape from the poverty trap’’ (Pugliese
et al., 2017a), in the Gini index-GDP per capita we observe here, the
red arrow has it final point in an intermediate–high fitness region.

Having said this, by allowing to observe the simultaneous effect of
income per capita and inequality on green fitness, this plot comple-

ments the descriptive analysis of the country rankings in the previous
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subsection, where the performance in green innovation of emerging
and advanced economies has been commented on. As expected, the
combined growth of income per capita and the decrease of inequality
from the starting to the final point in time lead to an increase in green
fitness. Only the US (in orange) departs from this behaviour: while
remaining among the top green innovators, its Gini index increases
over time. Indeed, for the US, which has already developed a very
advanced set of capabilities and is able to produce the most complex
green technologies, inequality does not seem to have a detrimental
effect on innovative capacity.

5. Concluding remarks and the way ahead

The objective of this paper was to explore the empirical associations
between income inequality and environmental innovation. These two
global challenges exhibit similar incidence across space, whereby coun-
tries that are most exposed to the perils of environmental degradation
are also among the poorest, and often suffer high levels of income in-
equality. Innovation, it has been argued, is the other main channel that
links together environmental sustainability and inequality. Empirical
evidence indicates that progress in technology is a key tool, albeit not
the only one, to preserve the environment while maintaining high levels
of economic performance. However, research has also convincingly
demonstrated that innovation can be a trigger of inequality which,
eventually, may undermine the ability to develop new technologies.
Closer insights into how inequality and the environment interact can
inform policymakers and other stakeholders involved in the design and
the implementation of sustainable development.

While most literature insists on the factors that facilitate the emer-
gence of new technology, we focus on the little-explored issue of
country specific circumstances that act as barriers to the pursuit of
environmental innovation. In particular, we focus on the knowledge
bases of countries to explore the extent to which domestic technolog-
ical capabilities rely on complex green technologies. In so doing, we
acknowledge the heterogeneity of green technology as regards both the
domains of know-how and of application. To this end, we relied on
economic complexity approaches to account for the diverse nature of
technological specialisation and for how this distributes across different
institutional domains like countries. In addition, the paper contributes
to the debate on the linearity of the relationship between inequality and
technological development. To do so, we employed both parametric
and non-parametric approaches to delve deeper into this relationship
at different levels of inequality and GDP per capita.

Taking advantage of the nested structure of green patenting data
we apply a complexity-based measure, the EFC algorithm, to define
a fitness measure of the green technological competitiveness of each
country. Such an approach affords the opportunity to study the green
technology portfolios of each country, and therefore to look beyond
measuring patenting intensity in isolation. In so doing we gain de-
tailed information on the global structure of country-technology inter-
actions and are able to explore the qualitative composition of inventive
activities. Moreover, this method is consistent with the notion that
innovating in any domain requires broad ensembles of specific and
generic know-how as well as the ability to recombine these inputs. In
short, innovation capacity goes hand in hand with a country’s long-term
development path.

Of course, our analysis does not exhaust the potential applications
of complexity-based measures to relevant questions in the field of inno-
vation. In fact, our patent-based green fitness offers a rich yet synthetic
measure of the degree of technological development of each country,
and leaves interesting questions open to investigation, such as whether
countries with similar degrees of fitness tend to follow similar paths
over time and whether the mix of technologies observed in a country
at a given point in time lead preferentially towards the expansion in
a well-defined set of new fields. Additionally, based on the export
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specialisation profiles of countries, the EFC metric has already proven
to be a valid tool in inferring a country’s manufacturing capabilities and
in linking its potential of growth with its productive structure. There-
fore, our measure of green technological fitness can provide additional
information on the trajectories of national innovation systems, and, if
put into relation with the export fitness, it could provide an even more
nuanced representation of growth and development possibilities.

The empirical analysis yields two main findings. First, income in-
equality exhibits significant negative correlation with countries’ green
innovation capacity. This suggests that, on average, the development
of more complex green technological capabilities is mainly concen-
trated in countries with low inequality. A possible explanation can
be extrapolated from the literature on the determinants of green in-
novation. On the one hand, higher complexity entails higher costs
and uncertainty in the knowledge generation process that characterises
exploratory activities. On the other hand, high inequality is detrimental
to innovation since the externalities from the rich, pioneer consumers
are lower. Combining these two aspects, we point out that the unequal
distribution of income lowers the benefits arising from the development
of complex technological capabilities. By exploring this relationship
through a non-parametric approach, we shed light on the non-linear
relationship between inequality and innovation. Our conjecture is that
this relationship differs according to the levels of inequality and the
countries’ wealth.

The second finding stems from the non-parametric approach: for
high income countries, low levels of inequality are associated with
higher capabilities in the development of more complex green tech-
nologies. In addition, increasing the level of inequality does not appear
a barrier to green technology development. Rather, moderate levels of
inequality facilitate specialisation in more complex technological fields.
This is ascribed to the pioneer consumer effect. Further, low income
inequality makes it possible also for countries with intermediate levels
of per capita income to develop the capabilities necessary to increase
their capacity to innovate in relatively complex green technologies.
This indicates that a more equal distribution of income matters espe-
cially for low- and mid-level income countries where income inequality
emerges as a barrier to green innovation capacity.

These findings bear relevance for policy insofar as the recent assess-
ment of mitigation and adaptation strategies by the Intergovernmental
Panel on Climate Change (IPCC, 2022) emphasises – together with the
traditional roles of international cooperation, finance and innovation
– also significant cross-country heterogeneity in climate vulnerability
and in capacity building. The consensus is that policy that aims at sup-
porting low-emission technology and business practices can only be ef-
fective if designed with a clear understanding of the attendant barriers,
especially in developing countries (Adenle et al., 2015). Comprehensive
instrument design that is consistent with national circumstances can
support the shift towards equitable a low-emission future. The present
paper calls attention to inequality as a burden for climate governance
in those settings and, thereby, as a plausible root for renowned weak
enabling conditions for investments in technology and competence
development. Inequality is in fact often associated with inadequate and
uncertain institutional settings characterised by lack of empowerment,
high levels of informality, and adverse power dynamics that constrain
the mainstreaming of climate action (Najam, 2005; Ramos-Mejía et al.,
2018).

We conclude by emphasising that the issues at hand are indeed
complex and that the limitations of the present analysis are a compass
for further research. First, the recurrent caveat in innovation studies:
we have only considered inventions that are captured by patents and,
while technology is touted to be a major driver of the transition to
sustainable economies, it is certainly not the only one. Future research
could build on our effort at mapping innovation capabilities and de-
velop more specific narratives of the manifold transformations that are
at play. Second, climate change is a global phenomenon with local
manifestations, and regional or city-level variation is crucial. Third, we

account for domestic capabilities only indirectly, and do not delve into
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the skills-innovation nexus as mediated by the institutional dynamics of
the attendant labour markets. Fourth, we have not explicitly accounted
for trade as a channel for green technology diffusion. Finally, we
focused on income inequality but remain aware of the manifold forms
of inequality that matter for environmental issues. Unequal access to
environmental goods, different degrees of exposure and vulnerability
to environmental risks, and uneven effects of environmental policies
are other important, if hard to measure, forms. While we are aware of
these limitations, we also hope that the present paper will inspire future
research on this compelling agenda.
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Appendix A. ENV-TECH technologies
See Table A.1.
Table A.1
1 & 2-digit ENV-TECH codes and labels.

Code 1-Digit Class Description 2-Digit Class Description
1 Environmental Management

1.1 Air pollution abatement
1.2 Water pollution abatement
1.3 Waste management
1.4 Soil remediation
1.5 Environmental monitoring

2 Water-related adaptation technologies

2.1 Demand-side technologies (water conservation)
2.2 Supply side technologies (water availability)

4 CCMTs related to energy generation, transmission or distribution

4.1 Renewable energy generation
4.2 Energy generation from fuels of non-fossil origin
4.3 Combustion technologies with mitigation potential (e.g., Using fossil fuels, biomass, waste, etc.)
4.4 Nuclear energy
4.5 Efficiency in electrical power generation, transmission or distribution
4.6 Enabling technologies in energy sector
4.7 Other energy conversion or management systems reducing GHG emissions

5 Capture, storage, sequestration or disposal of greenhouse gases

5.1 𝐶𝑂2 capture or storage (CCS)
5.2 Capture or disposal of greenhouse gases other than carbon dioxide (𝑁2𝑂, 𝐶𝐻4, PFC, HFC, 𝑆𝐹6)

6 CCMTs related to transportation

6.1 Road transport
6.2 Rail transport
6.3 Air transport
6.4 Maritime or waterways transport
6.5 Enabling technologies in transport

7 CCMTs related to buildings

7.1 Integration of renewable energy sources in buildings
7.2 Energy efficiency in buildings
7.3 Architectural or constructional elements improving the thermal performance of buildings
7.4 Enabling technologies in buildings

8 CCMTs related to waste water treatment or waste management

8.1 Wastewater treatment
8.2 Solid waste management
8.3 Enabling technologies or technologies with a potential or indirect contribution to GHG mitigation

9 CCMTs in the production or processing of goods

9.1 Technologies related to metal processing
9.2 Technologies relating to chemical industry
9.3 Technologies relating to oil refining and petrochemical industry
9.4 Technologies relating to the processing of minerals
9.5 Technologies relating to agriculture, livestock or agroalimentary industries
9.6 Technologies in the production process for final industrial or consumer products
9.7 Climate change mitigation technologies for sector-wide applications
9.8 Enabling technologies with a potential contribution to GHG emissions mitigation
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Appendix B. Technological fitness

In this section, we delve deeper in the description of the Technolog-
ical Fitness of countries and its relation to GTF. The aim is to provide
the interested reader with a bit more context and allow a qualitative
comparison between these two measures, which are closely related
and capture complementary aspects of the innovative capabilities of
nations.

Fig. B.1 plots on a map the Technology Fitness ranking of countries,
similarly to what Fig. 3 does for GTF. Comparing the two figures shows
that the coverage is similar, meaning that most countries that patent,
also file same patents in green technologies. Also the colour pattern is
237
broadly similar, suggesting that there is a positive correlation between
Technological fitness and GTF. Fig. B.2 further confirms the existence of
a positive relation between Technological Fitness and GTF by plotting
the ranking of countries at different points in time along the two
dimensions against one another. The scatter plot shows that countries
with a good Technological Fitness ranking also tend to rank well in
terms of GTF. However, there is considerable dispersion, meaning that
there are countries that rank high in terms of Technological Fitness that
have low GTF and vice versa. The dots in the plot are coloured to reflect
the time period to which they correspond. The colour pattern in the
figure suggests that the association between the two measures does not
depend strongly on time.
Fig. B.1. Snapshot of the geographic distribution of the Technological Fitness Ranking across countries. Colour coding: dark green (top of the ranking), light green (middle) to
brown (bottom). White: no data available. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. B.2. Technological Fitness ranking (x-axis) VS Green Technological Fitness ranking of countries. Rankings are normalised between 0 and 1 (with 1 being the best ranking).
Dots refer to the ranking of a country at a specific point in time. Dot colours reflect the time window to which each observation belongs. Recall that rankings are computed
based on average patenting over 5-year time windows; hence, for instance, a dot tagged as corresponding to year 2005 covers the period 2005–2009. The plot shows a positive
association between Technological Fitness and GTF throughout the period under analysis. However, there is also considerable variability.
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Appendix C. Joint distribution

See Fig. C.1.
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Appendix D. OLS estimation

See Table A.2.
Fig. C.1. Pairwise joint distribution of 𝑙𝑜𝑔(𝑔𝑑𝑝𝑝𝑐 ) with all inequality measures. The brown curves reflect observations relative countries in the bottom third of the distribution of
average 𝑔𝑑𝑝𝑝𝑐 ; the light green curves refer to countries with middle average 𝑙𝑜𝑔(𝑔𝑑𝑝𝑝𝑐 ); the dark green curves refer to countries with high average 𝑙𝑜𝑔(𝑔𝑑𝑝𝑝𝑐 ). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Table A.2
Parametric regression results — Green technology fitness.

(1) (2) (3) (4) (5)

Gini (ln) −8.748**
(0.779)

90:10 −0.0640***
(0.0171)

80:20 −0.160***
(0.0455)

70:30 −1.260***
(0.393)

60:40 −4.209***
(1.088)

GDP pc −0.683*** −0.571*** −0.532*** −0.479*** −0.454***
(0.125) (0.148) (0.147) (0.137) (0.134)

Pop Density −0.000309 0.0000373 −0.000438 0.000107 −0.000403
(0.000445) (0.000158) (0.000415) (0.000144) (0.000435)

Schooling −0.0190 −0.114** −0.122*** −0.125** −0.120**
(0.0377) (0.0531) (0.0469) (0.0551) (0.0467)

Country FE No No No No No
Time trends No No No No No

R2 0.137 0.139 0.165 0.124 0.148
N 273 199 207 198 207

Notes: Dependent variable is mean Green Technology Fitness per country per year. Robust standard errors in parenthesis. * 𝑝 < .1, ** 𝑝 < .05,
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