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The trickle 
down from environmental 
innovation to productive 
complexity
Francesco de Cunzo 1, Alberto Petri 2,3, Andrea Zaccaria 2,3* & Angelica Sbardella 3,4

We study the empirical relationship between green technologies and industrial production at very 
fine-grained levels by employing Economic Complexity techniques. Firstly, we use patent data on 
green technology domains as a proxy for competitive green innovation and data on exported products 
as a proxy for competitive industrial production. Secondly, with the aim of observing how green 
technological development trickles down into industrial production, we build a bipartite directed 
network linking single green technologies at time t

1
 to single products at time t

2
≥ t

1
 on the basis 

of their time-lagged co-occurrences in the technological and industrial specialization profiles of 
countries. Thirdly, we filter the links in the network by employing a maximum entropy null-model. Our 
results emphasize a strong connection between green technologies and the export of products related 
to the processing of raw materials, notably crucial for the development of climate change mitigation 
and adaptation technologies. Furthermore, by looking at the evolution of the network over time, we 
observe a growing presence of more complex green technologies and high-tech products among the 
significant links, suggesting an increase in their importance in the network.

The fight against climate change is at an unprecedented critical phase: the impact of human systems of produc-
tion and consumption on the environment as well as the transition to a more sustainable economy are at the 
center of public attention and EU policy  agenda1–3. In this context, the development of green technologies, which 
despite being relatively at an early stage of the life cycle has shown a great acceleration over recent  years4, might 
play a crucial role both towards containing and preventing greenhouse gas (GHG) emissions and in sustaining 
a shift towards less environmentally costly manufacturing  processes4–6. It is therefore of the greatest importance 
to investigate how green technologies are connected to the economy and, in particular, to industrial production. 
This is what motivates our paper. In particular, by adopting a complexity perspective, we aim at filling some gaps 
in the study of the interplay between green innovation and production by implementing a highly granular analysis 
that allows us to explore how individual green technologies unfold into industrial production.

Several aspects of the nexus between export and green technological development have been examined at 
the aggregate level. By exploring different directions of causality at the firm, industry and country level, a wide 
array of studies has focused on the export-green innovation nexus generally highlighting a positive relation-
ship between (policy/regulation induced) eco-innovations and export competitiveness/performance7,8,  quality9, 
 propensity10, or  diversification11 (for a review on the topic with a special focus on agrifood supply chains see 
Galera-Quiles et al.12). However, previous research has largely looked at the link between overall green techno-
logical innovation and overall or sector specific export at highly aggregated levels—i.e., by focusing respectively 
on green patent counts and export volumes (or intensity/participation rates etc.)—overlooking the fact that a 
green technology may foster the export of a specific product or bundle of products, but this may not be true for 
all products, and a negative association with other exported goods could also be found.

Accordingly, we propose a novel quantitative framework rooted in the Economic Complexity (EC) 
 literature13–15 that enables us to unpack the green innovation-export nexus by exploring how single green tech-
nological innovations, as proxied by patenting activity in climate change adaptation and mitigation technologies 
(CCMTs), trickle down into industrial production at the level of single products, as proxied by export  data16. 
Our approach is particularly relevant when looking at green technologies, because, as they encompass different 
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domains of know-how17, are designed to fulfill a broad range of  functions18, are heterogeneous across geographi-
cal  areas19,20 and linked in non-trivial ways to pre-existing knowledge  bases20–22, treating them as a homogeneous 
aggregated corpus may fail to disentangle the possibly differentiated effects of specific green innovations on 
specific products. This line of reasoning is resonant with the ambition of the Economic Complexity literature to 
“describe and compare economies in a manner that eschews aggregation”23. In fact, by combining insights from 
the  evolutionary24,25 and structuralist  approaches26,27 in economics, EC describes the economy as a dynamic 
process of globally interconnected ecosystems and, in a departure from standard economic views, goes beyond 
aggregate indicators and measures of productive inputs. It considers instead a more granular view of the produc-
tive possibilities of an economy by emphasizing the importance of the composition of export baskets for long-run 
 growth13,28–30. In particular, the methodology we propose is based on the Economic Fitness and Complexity (EFC) 
 approach15,31,32. EFC is part of the burgeoning literature on EC and is a multidisciplinary approach to economic 
big data where the informational content of different types of empirical networks is maximized by using ad 
hoc algorithms which optimize the signal-to-noise ratio. EFC has proved highly successful in  forecasting30 and 
 explaining33 economic growth, and has been adopted by both the World  Bank34 and the European  Commission35.

Recently, some promising attempts to draw insights from the EC literature to analyse environmental issues 
have been put forth, with focus on environmental  products36–39,  technologies18–20,40–43 and  jobs44, setting the basis 
for a study of the productive or technological capabilities that are relevant to the green economy. Bearing in 
mind the benefits and the shortcomings of using patent data for studying technological innovation and especially  
their limited coverage in developing  economies45–47, our empirical contribution builds on the Green Technology 
Fitness measure and green technology space proposed by Sbardella et al.19,43, Napolitano et al.40 and Barbieri 
et al.20. Moreover, our analysis is linked to studies on the coherence in firm-level  patenting48–50, the product 
 space32,51, and especially to the technology-science-export multi-partite network of Pugliese et al.52. However, 
with respect to the extant literature, the present work examines the not yet explored link between green patent-
ing and industrial production and proposes a reliable methodology to assess the empirical connections between 
these two dimensions by employing a more solid network link statistical validation strategy.

In practice, the application of the EC toolbox that we propose allows us to construct a network linking single 
CCMTs, identified through the Y02 Cooperative Patent Classification (CPC) technology class (see “Methods” 
section), to single exported products, classified according to the Harmonized System (HS). This network is 
obtained by contracting over the geographical dimension the two bipartite networks connecting countries with 
comparative advantages in green technologies at time t1 and countries with comparative advantages in exported 
products at time t2 ≥ t1 respectively, with a time lag between these two layers of �T ≡ t2 − t1 (where �T could 
also be equal to zero). Once the co-occurrences in the same country of competitive patenting and export are 
identified, their statistical significance is assessed via an ad hoc maximum entropy null-model53. The final result 
is a green technology-product bipartite network, where each link represents the (statistically significant) con-
ditional probability that if a generic country is proficient in a green technology τ at time t1 , it will also be able to 
export competitively product π at time t2 . Each link from a green technology to an exported product highlights 
the fact that they share similar underlying technological and productive capabilities, therefore indicating the 
existence of high probability of jumping from the green technology to the linked product. An important feature 
of the network is its time-dependency: the direction and magnitude of the information flow can change in time 
and different time lags ( �T ) between green patenting and product exports can be considered. Our findings 
show that green technologies are especially connected to the export of raw materials, such as mineral, metal, and 
chemical products. Their persistent presence and importance in our network resonate with the literature on the 
raw material requirements that the green transition  entails54–58. In fact, materials like lithium, cobalt, indium, 
nickel are key inputs for several green technologies, particularly in the domain of renewable energy generation/
storage and electrical mobility. Hence, to deal with the climate and environmental crisis, it is crucial to carefully 
take into consideration the extent to which an increase in the development of green technologies could affect 
mineral demand, extraction processes and environmental  inequality1,59,60. Among the goods significantly related 
to green technologies we also find different products related to the export of animals and vegetables—mainly 
linked to technologies for GHG capture and storage—and machinery and electrical products—mainly linked 
to CCMTs in information and communication technologies. Moreover, a key result of our analysis is that the 
network structure changes when switching from �T = 0 to �T = 10, as for Δ = 10 we register a growing pres-
ence of complex green technologies and products in the statistically validated network links, suggesting that 
more complex green know-how requires longer to unfold into industrial production.

By shedding light on the dynamic complementarity and interrelation between green technological develop-
ment and specific production lines, our methodology identifies in a quantitative and replicable way the green 
footprint of each product. This might prove to be instrumental in informing policy on the potential entry points 
in which countries can compete in emerging green markets and on the eco-innovative domains that trickle 
down the most into industrial production, and accordingly in designing targeted policy interventions aimed at 
fostering more sustainable production practices.

Results
As mentioned above, the aim of this paper is to leverage statistically validated networks to explore the connec-
tions between green technologies and exported products, i.e. the trickle down from green technology innova-
tion to industrial production. Each link between a green technology and a product suggests not only that being 
competitive in the two requires similar underlying capabilities, but also that a comparative advantage in the 
green technology is a good predictor for the development and succesfull export of the product. We compute 
the validated links for two different aggregations of the data on exported products, moving from a broader level 
of description—consisting of 97 so-called product chapters, labeled with 2-digit codes—to a more detailed 
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one—consisting of 5053 product subheadings, labeled with 6-digit codes. Moreover, we are able to assess the 
evolution of the green technology-product network by taking into account the effect of a time lag of 10 years 
between the development of green technologies and the export of the products.

Green technology—product connections. In order to build the bipartite network in which green tech-
nologies are linked to exported products, we start by considering two binary networks: the first connects coun-
tries to the green technologies they patent competitively, the second connects countries to the products they 
export competitively. By summing over the geographical dimension we then build the so-called Assist Matrix32,52, 
i.e. in our case the adjacency matrix of the green technology-exported product network, in the following way:

where the M matrices define the bipartite networks where countries are linked to the green technologies or 
exported products in which they have a comparative advantage (see “Methods” section). That is, we are counting 
suitably normalized co-occurrences, with the normalization factors being the product diversification of country 
c at year t2 dc(t2)—i.e. the number of products included in the export basket of that specific country—and the 
ubiquity of the green technology τ at year t1 uτ (t1)—i.e. the number of countries that are patenting in that specific 
technological sector. The resulting green technology-product links are then statistically validated by using the 
Bipartite Configuration  Model53,61. We set at 95% the minimum significance threshold with which we validate 
our results, as we consider this to be a reasonable compromise between the number of observed links and their 
robustness. The details of the validation procedure can be found in the “Methods” section.

Aggregated analysis. Initially here we consider simultaneous normalized co-occurrences, that is with a time 
lag �T ≡ t2 − t1 = 0 between the two network layers. Firstly, we investigate the links between green technolo-
gies and exported products at a 2-digit aggregation level. Figure 1 represents the adjacency matrix of the green 
technology-product network at a 95% statistical significance, where we find 46 significant links in total (i.e. 46 
green rectangles in the figure). This figure allows us to provide some initial qualitative insights on which green 
technologies and exported products are connected and which are not. As regards green technologies we note 
that, although not uniformly, all technology sub-classes (see Table 1 for CPC Y02 code descriptions) have some 
links to products and are present in the network. The same cannot be said for the exported product layer: some 
2-digit product sections are almost completely disconnected, including e.g. Foodstuffs, Plastics/Rubbers, Leather 
and Textiles, while others have a considerable amount of links. In particular, product like Mineral fuels, Nickel, 
Lead, Organic and Inorganic chemicals are highly connected with green technologies such as Technologies for 
adaptation to climate change (Y02A) and CCMTs in information and communication technologies (Y02D), indi-
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Figure 1.  Heatmap representation of network links at 95% level of significance. Y-axis = CPC codes of green 
technology sub-classes; x-axis = 2-digit exported products. Each green rectangle corresponds to a link between 
the corresponding green technology on the y-axis and exported product on the x-axis.
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cating that a relatively high number of countries are active in both. This hints at an overlapping of the green 
technological know-how and the productive capabilities needed for being proficient in both, suggesting that 
countries that do patent in technology sub-classes as Y02A and Y02D not only are more likely to export raw 
material products, but also that different types of metals and chemicals are highly connected to R&D in CCMTs, 
and thus new sustainable avenues in their production could be explored. The topic of raw material products and 
a specific case study will be discussed more in detail below.

In Fig. 2 we offer an alternative representation in which we show the directed network between green tech-
nologies and exported products, with the node size being proportional to the node degree and the thickness 
of the edges to the corresponding Assist Matrix entry. The network representation permits a clear distinction 
between the disconnected components (such as the two nodes relative to air transport in the bottom left) and 
the large connected component in the center. For instance, it is interesting to notice the energy-related cluster on 
the left portion of the plot, where green technologies aimed at improving efficiency in computing, in wire-line 
and wireless communication networks and in the electric power management are linked to the export of raw 
material products and optical and electrical products, which are important inputs for these kinds of technologies.

Fine‑grained connections. We move forward into the analysis by considering the 5053 exported products 
present in the HS classification at 6-digit aggregation level. Increasing the level of data breakdown reveals the 
potential of our methodology, that can be easily applied to any level of data aggregation, and when applied 
to fine grained information can provide very punctual insights. Figure 3 represents the entire bipartite green 
technology-product network. The dimension of the nodes is proportional to their degree; the green ones cor-
respond to green technologies, while all the others correspond to exported products and are coloured according 
to the product sections they belong to (see Table 2). We notice that, in line with the 2-digit product case, almost 
all green technologies (39 out of 44) are present in the network. This means that almost all green technologies are 
connected to the production of at least one product. However, depending on where the nodes are placed in the 
network, a green technology may be more or less integrated into the production system as a whole. More specifi-
cally, we can see that the periphery of the network is dominated by technologies related to services and transport, 
while the core of the network contains technologies belonging to sub-classes such as Y02A, which covers tech-
nologies for the adaption to the adverse effects of climate change in human, industrial (including agriculture and 
livestock) and economic activities, and Y02W, which covers CCMTs related to waste management.

In Table 2 we collect some descriptive information on the distribution of product nodes and edges in the 
network. More in detail, products belonging to primary sectors, such as animal and vegetable goods, show a 
large number of connections with green technologies. In particular, we observe links between different green 
technologies and the export of meat, fish, milling industry products and grains. All of these are largely connected 
with Y02A—especially with Y02A 40-Adaptation technologies in agriculture, forestry, livestock or agroalimentary 
production—and Y02A 50-Adaptation technologies in human health protection and with Y02C-Technologies for 
capture, storage, sequestration or disposal of GHG. This is consistent with the high level of pollution and emis-
sions that the agricultural and livestock sector is accountable  for63. Finally, consistently with the results obtained 
in the 2-digit product case, the subheadings belonging to minerals, chemicals and metals product sections are 
confirmed to be highly connected to green technologies. We elaborate on this by focusing on the export of cobalt 
in the following.

Table 1.  CPC Y02 tagging scheme. Source:  EPO62. In the first column the CPC code identifying the Y02 
technology sub-class is reported. The second column reports the corresponding description.
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A case study: cobalt. An interesting product export example in our green technology-product network is that 
of Cobalt and other intermediate products of cobalt metallurgy (Harmonized System code 810520). Figure 4 lay-
out highlights which technologies are significantly connected to the successful export of cobalt, with a level of 
confidence even above 95%. In the figure, three red concentric circles delimit the 99.9%, 99% and 95% level of 
significance. The blue peaks exceeding one of these circle in the figure denote that the export of cobalt is linked 
at the corresponding level of significance with the green technology labeled around the circular border. In par-
ticular, cobalt export is linked with Technologies for adaptation to climate change (Y02A), related to transporta‑
tion (Y02T) and waste treatment (Y02W), for energy generation, transmission and distribution (Y02E), and with 
CCMTs in in information and communication technologies (Y02D) and in the production or processing of goods 
(Y02P).

The case of cobalt is useful to stress the consistent presence of raw materials among the exported products 
most linked to green technologies in our network. This is far from surprising: these materials are crucial for 
producing green technologies, such as photovoltaic panels, wind turbines, batteries and battery energy storage 
systems, etcetera; indeed, an emerging literature on the topic has made different attempts to estimate the mineral 
intensity of green technologies and to forecast how their proliferation will shape mineral demand in the years 
to  come56–58,64–66. In particular, cobalt is considered a high-impact mineral for the sustainable transition and to 
meet expected future demand its production will need to increase up to nearly 500% of 2018 levels by  205055. 
Cobalt is a key element in energy storage technologies, which for instance are used in the automotive sector 
to power electric vehicles and are needed to store energy from intermittent renewable sources, such as photo-
voltaic panels and wind turbines. Given that 64% of global cobalt supply comes from the Democratic Republic 
of  Congo67, the risks associated with meeting its demand—which will rise if certain climate targets are to be 
met—and the cross-cutting way in which it is used in green technologies, have led to cobalt being placed on the 
European Commission’s list of critical raw materials (CRMs)54, which includes materials considered critical for 
their supply risk and economic importance. The list is updated every three years, and cobalt features in it since 
its first version published in  201168. It is worth noticing that REGPAT, the patenting dataset we employ, does 
not cover the Democratic Republic of Congo. However, even if cobalt main world supplier is missing, we still 
observe many connections between cobalt and cobalt metallurgy products and green technologies. In particular, 
these connections arise from the co-occurrences of several green technologies and cobalt product exports in 
countries like Australia, Belgium, Canada, Finland, Norway, Russia and South Africa, which are all important 
producers of raw and refined  cobalt60,69.

Connections in a 10 year horizon. With the aim of analysing whether the spectrum of green technolo-
gies needed to gain a comparative advantage in a variety of productive sectors changes over time, here we explore 

Figure 2.  Directed network from green technologies to exported products for time lag �T = 0 and 2-digit 
product aggregation level. Nodes’ size depends on their degree; edges are weighted according to the value of the 
Assist matrix Aτπ.
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how the links between green technologies and exported products change, both in qualitative and quantitative 
terms, moving from a time lag between the green technology and exported product layers of �T ≡ t2 − t1 = 0 
to �T = 10 . In fact, our analysis can be conducted also by considering different values of �T allowing for a 
dynamic perspective on the green technology–production nexus.

When considering �T = 10 from a quantitative point of view we observe a slight increase in the total num-
ber of links, both in the case of 2-digit and 6-digit products (from 46 to 60 links in the case of 2-digit products 
and from 2166 to 2354 links in the 6-digit case). This finding is coherent with the results presented in Pugliese 
et al.52, in which the authors show that technological advancements on average anticipate export. The increase 
of roughly 10% of the resulting links suggests that green technologies are better integrated into the production 
process after a ten years digestion.

Regarding possible differences in the properties of the linked technologies and products for both time lags, 
in Fig. 5 we plot the cumulative increment in the number of links for both green technologies and exported 
products. In particular, in the x-axis of the two plots we rank green technologies (top panel) and exported prod-
ucts (bottom panel) by increasing complexity, which is computed through the implementation of the Economic 
Fitness & Complexity (EFC)  algorithm15 (see the Supplementary Information [Economic Fitness & Complexity 
algorithm]). The green/blue line in the figures plots the cumulative difference between the number of links that 
each activity shows for �T = 10 and �T = 0—in formula: yi =

∑ithranked
j=last ranked nj(�T = 10)− nj(�T = 0) , where 

yi is the value corresponding to the ith ranked green technology/product and nj(�T) refers to the significant 
number of links that the jth ranked green technology/product has at the corresponding �T . What emerges from 
the two plot layouts is significant: the new links that appear when the time lag is increased are relative to more 
complex products as well as to more complex green technologies. For example, we observe an increase in the 
number of significant links with high complexity products such as those related to the Machinery/Electrical and 
the Optical instruments sections and with complex climate change mitigation technologies in the following sub-
classes: Y02D 10-Energy efficient computing, Y02D 70‑Reducing energy consumption in wireless communication 
networks, Y02T 30‑Transportation of goods or passengers via railways and Y02T 50‑Aeronautics or air transport. 
Therefore, it is likely that more complex potential spillover effects in industrial production deriving from the 
development of a green technology will manifest themselves at a later stage over time. This is in line with the 
idea that more complex green technological know-how requires more time to be transmitted to the productive 
sectors. Moreover, this finding is in agreement with Barbieri et al.17,21 that study the relationship between green 

Figure 3.  Directed network from green technologies to exported products for a time lag �T = 0 and 
6-digit products aggregation level. Nodes’ size is proportional to their degree. Green nodes: green 
technologies with green arrows pointing to the description of some of them. All other nodes: exported products 
(coloured according to Table 2).
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Table 2.  Exported product sections. 1st column: product section names; 2nd − 3
rd columns: which 2-digit 

products and how many 6-digit products are included. 4th − 5
th columns: number of nodes and edges in the 

network of Fig. 3. The percentages between parenthesis are computed with respect to the total values reported in 
the final line. Note that product 999999: Commodities not specified according to kind is not included.

Figure 4.  Focus on the export of Cobalt and other intermediate products of cobalt metallurgy (Harmonized 
System code 810520). Along the circular border of the figure, the CPC codes of the 44 green technology 
groups are labeled. Within the figure, three concentric circles delimit the significance levels of 99.9%, 99% and 
95% respectively. Each peak in blue that exceeds the level delimited by one of the inner circles corresponds to a 
link that cobalt has with the green technology described in the border.
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and non-green knowledge bases and argue that green technologies are generally complex and have a heterogene-
ous development process, involving different domains of know-how.

Discussion
To address the climate crisis it will be essential to change the way economies have grown and  developed59. Within 
this context, the development of eco-innovations aimed at reducing GHG emissions and their diffusion within 
global value chains can make important contributions towards decarbonization. However, it is important not 

Figure 5.  Cumulative difference between the number of node links for the time lag �T = 10 and �T = 0 . The 
top panel refers to green technologies (green line), while the bottom panel (blue line) refers to 2-digit exported 
products. In their respective panel, green technologies and exported products are sorted in order of increasing 
complexity ranking. The x-axis labels 25%, 50% and 75% delimit the first, second and third quartiles of the 
complexity ranking (moving from the last to the first position). If the y-value is below/above 0 (dashed red line), 
then the cumulative number of links delimited by the corresponding green technology or product in the x-axis 
is higher for �T = 0/�T = 10.
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to disregard the intrinsic limits of a “big technological fix”70,71 and to be aware that science and technology can 
indeed provide effective tools to tackle the climate change, but they will be the more effective the more they 
will be accompanied by a project of radical transformation of current production and development  models1,72.

Our work might provide valuable insights on understanding possible future scenarios resulting from the 
development of green technologies and on how trade may act as a channel for green technology diffusion. To 
this end, we propose a novel application of the Economic Complexity framework and construct a network that 
links green technologies to exported products—at a given statistical significance, time lag, and at any CPC and 
HS classification aggregation level—enabling us to investigate on a case-by-case basis how green technological 
know-how is transmitted, even years later, into industrial production. Our empirical analysis yields two main 
findings. When observing simultaneous co-occurrences between comparative advantages in green technologies 
and exported products, we emphasise a strong association between green technologies and the export of raw 
materials, especially mineral and metal products. In addition, we provide evidence on a relevant number of 
significant connections between products belonging to the agricultural and livestock sector, among the globally 
highest pollutant  industries63, such as Animal & Animal products, and green technologies aimed at GHG emis-
sions capture and storage. Whereas, when considering time-lagged co-occurrences, for �T = 10 we register a 
larger presence of significant links involving more complex green technologies and products (where complexity 
is assessed via the Economic Fitness & Complexity algorithm applied separately to products and green patents), 
such as green technologies related to transportation or used in ICTs, and machinery/electrical or optical instru-
ments products. This suggests that the process that can lead to the development of the joint capabilities required 
for the development of complex green technologies and the competitive production of high-tech products is not 
instantaneous and may require years to unfold.

By emphasizing the heterogeneous, disaggregated effects that individual CCMT patents can have on the 
production and trade of single goods, our multi-level analysis may bear relevance to the green transition policy 
context. Our findings may provide support for short- and medium-term industrial policies by allowing to target, 
with high level of detail, green technologies that are more likely to leave larger footprints in industrial produc-
tion or mitigate the impact of polluting industries on the basis of each country’s green technological capabilities. 
Accounting for differentiated effects also over time through the dynamic observation of the green technology-
product network, our approach might be of help in uncovering the time window required by more complex green 
technological know-how to be transmitted into production, and thus in designing policies acting on different 
time horizons. Furthermore, since monitoring the trade of environmental goods is a central objective on the 
global policy  agenda73,74, by identifying green footprints in products, our work might contribute to classifying 
environmental products. In fact, whilst the introduction in the Harmonized System of several 6-digit subheadings 
including new environmental goods was  announced75 in 2020, the updated classification is not yet available, and 
currently a clear-cut identification of environmental goods within existing product classifications constitutes 
a difficult task—as for instance it is impossible to distinguish between combustion engine and electrical cars.

With respect to the Economic Complexity literature that focuses on various aspects of the green economy, this 
work introduces different elements of novelty. In fact, previous works analyse green technologies and industrial 
production separately, either without exploring the connections between green patents and exported products or 
by analysing it ex-post19,36,38,39,41. Moreover, extant  research22,37–39,41 proposes a number of versions of the green 
product or technology space, however without considering any dynamic element, as well as without using any 
validation strategy of network links and thus possibly considering spurious associations, that fail to account for 
the ubiquity of products/technologies and the diversification of countries, as we are instead able to do in this 
contribution.

This paper opens up different possibilities of extension of our empirical framework that might contribute to 
broadening our understanding of the complex interactions that the path towards the sustainability transition 
entails. First, we believe it would be of interest to explore the interplay of green technological and produc-
tive capabilities with other important dimensions of human activity, in particular by looking at the relation-
ship between green technology development, industrial production and (1) the labour market (including e.g. 
data on employment and wages at sectoral and occupational levels); (2) the scientific production of countries 
through academic publication  data76. Second, if new data will become available, analysing longer time spans 
might increase the observed  signal52, thus helping to better characterise the structural relationships that link 
green technologies to production. Third, by geolocalising the co-occurrences that we have identified, we plan to 
define a measure of green technology-product relatedness that might shed light on the green footprints in the 
specialisation profiles of each country or region. Finally, as mentioned above, our findings call attention to the 
strong connection between the development of green technologies and the trade of metals and minerals they 
require to be successfully realized and deployed. The critical raw materials intensity of these technologies is a core 
issue in the policy  debate55,56,68: CRM extraction contributes importantly to GHG  emissions57,77,78, with the risk 
of thwarting the efforts towards the promotion of less polluting energy sources by shifting emissions upstream 
in the energy generation process and increasingly relocating environmental negative externalities in the Global 
 South60,64,79. Accordingly, future research should delve deeper into such CRM dependency. Our next project 
points in this direction and aims at mapping mineral and metal inputs in green technologies through keyword 
search on patent texts. On a larger scale, we believe it would be of paramount importance to direct future research 
and policy towards preserving the stability of the raw materials value chain by limiting the supply dependence 
on and the over exploitation of specific areas, as well as promoting recycling practices, more transparent and 
fairer raw material extraction activities, while also fostering the development of eco-innovations less dependent 
on critical raw materials.
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Methods
Data. We use data on patent applications in environment-related domains as a proxy for environment-related 
innovation, and data on exported products as a proxy for  production16. Both datasets consist of single data collec-
tions recorded annually at a country level. We use information on patent applications on 44 green technological 
fields—corresponding to the Coperative Patent Classification groups listed in the Supplementary Information 
[Table S2:CPC detailed descriptions]—for 48 countries between 1995 and 2019; and on product exports—clas-
sified according to the Harmonized System and whose number depends on the level of aggregation considered: 
97 in the 2-digit case, 5053 in the 6-digit one—measured in US dollars for 169 countries between 2007 and 2017. 
As explained more in detail in the next section, our methodology requires selecting the countries in common 
between the two data collections, which turn out to be 47. All data can be represented as matrices: we denote 
by W(t) and V(t) the matrices corresponding respectively to the data on green patents and exported products 
in year t. Each matrix has a number of rows and columns equal to the number of countries c and activities a 
respectively, where the latter refer to either green technologies τ and exported products π . A more comprehen-
sive description of the two datasets we use, including also a list of all countries at our disposal, is reported in the 
Supplementary Information [Data features].

Data preprocessing. Temporal aggregation. The information on both exported products and the patent-
ed inventions is collected yearly; it is then possible to investigate the connections at different time scales. While 
annual data can offer more detailed results, i.e. distinct for each year considered, it may also supply them with 
more noise. In fact, data can fluctuate significantly from one year to another. In order to minimize the possibility 
that the detected green technology-product connections are the result of data fluctuations, we consider the total 
volume of products and patents produced in given time intervals. For our analysis, we compute the matrices 
W(δ, t) and V(δ, t) , corresponding to the time interval of δ years ending in the year t. To this aim, we sum the 
yearly matrices V(t) and W(t) over δ:

Summing data over a time window of δ years reduces the noise in our results, giving more weight to patents and 
exports that are consistently registered several times in nearby years. Given the years present in the employed data-
sets, we sum the matrices over 5 years ( δ = 5 ). Starting from the layer of exported products, we select the two 
most recent 5-year aggregate matrices available to us, with the condition that the years included in the two sets 
are not overlapping. Therefore, the two resulting matrices are V(δ, t) = {V(5, 2012);V(5, 2017)} . Next, depend-
ing on which time lag �T we consider between the two layers, we select the green patents matrices. Thus, for 
the time lag �T = 0 , the corresponding matrices are W(δ, t) = {W(5, 2012);W(5, 2017)} , while for �T = 10 , 
when we consider green patenting as a “predecessor” of exporting, they are W(δ, t) = {W(5, 2002);W(5, 2007)} . 
To simplify the notation, hereinafter we omit the δ dependency of the data matrices, however all our results 
are produced from the analysis of the aggregated 5-year data collections mentioned above. Choosing the most 
recent time frame available in the data allows us to obtain more relevant implications from our work. However, 
to avoid any possible bias due to our choice of time window, we have conducted different robustness checks on 
the network links using both different aggregation time intervals δ and final year t, and we have concluded that 
the green technology-product links we find are robust to such changes in the parameters. These tests can be 
found in section Robustness test of the Supplementary Information.

Revealed comparative advantage. Both exports and patents’ matrices strongly depend on the total size of the 
economy or sector. In order to remove this size correlation, we compute Balassa’s Revealed Comparative Advan-
tage (RCA)80 of both activities. The RCA is computed as the ratio between the weight of activity a (be it a patent 
in a technology field τ or the export of a product π ) in the portfolio of country c and the weight of that same 
activity with respect to the world volume, as reported in the following equation:

where the element Xca refers to both Wcτ and Vcπ , i.e. the elements of the country-green technology and 
country-exported product matrices (for a more detailed description on how the matrices are built, we refer 
to the Supplementary Information [Data Features]). The next step is the computation of the binary matrices 
M = Mca = {Mcτ ;Mcπ } , whose elements are set to 1 if the value of RCAca ≥ 1 and to 0 otherwise, i.e. when that 
country c is not competitive in activity a. The RCA metric is frequently used in the Economic Complexity frame-
work to assess whether a country is a significant exporter of a  product14,51. The extension of its use to the patent 
 layer52 allows us to compare patent and export data in a coherent way as presented in the following sections.

(2)

V(δ, t) =

t
∑

t′=t−δ+1

V(t ′)

W(δ, t) =

t
∑

t′=t−δ+1

W(t ′)

(3)RCAca =

Xca
∑

a′ Xca
∑

c′ Xc′a
∑

c′a′ Xc′a′
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Construction of the validated network. Full technology‑product network. Starting from the binary 
matrices M described above, that summarise the comparative advantages in the products and technologies of 
different countries, a network linking green technologies to products can be derived. The method adopted here 
has been widely exploited in the Economic Complexity  framework52: the idea is to count how many countries 
have competitively developed a given green technology at time t1 and are also competitive in the export of a 
product at time t2 . This number thus quantifies the empirical green technology-product co-occurrences81. In 
practice, however, the co-occurrences should be suitably normalized to take into account the nested structure 
of the bipartite networks: countries with high diversification dc and technologies with high ubiquity uτ provide 
less information and for this reason the weight of the corresponding co-occurrences is lowered. The result of this 
normalization is called Assist  Matrix32,52. The co-occurrences can be obtained from the contraction of the binary 
country-technology and country-product matrices. The assist matrix element Aτπ depends on both the year t1 
relative to the patenting of the technology τ and the yeart2 of the subsequent export of product π . In formula:

By counting the co-occurrences between green technologies and exported products—while weighing them with 
the degree (or ubiquity) of the green technology uτ and the country degree (or diversification) in the exports dc
—each element of the matrix Aτπ (t1, t2) provides a quantitative measure of how likely is to have a comparative 
advantage in exporting product π in year t2 , conditional on having a comparative advantage in green technology 
τ in year t1 . Therefore, t1 and t2 indicate that in the formula it is considered the possibility that the link couples 
patents developed in a given year with products exported in a different year. Finally, it is important to notice 
that while a statistically significant link between a green technological class and a product is established on the 
basis of the empirical conditional probability that having a comparative advantage in the green technology will 
lead to a comparative advantage the export of a specific product, we are in no way arguing that there is a causal 
relationship that links green patenting to subsequent product export. After the computation of the Assist Matrix, 
we statistically validate the empirical results expressed by each node Aτπ (t1, t2) through the implementation of 
a null model which we present in the following section.

Statistical validation of the network using a null model. The matrix elements computed in Eq. (4) need to be 
validated by a statistical test able to distinguish meaningful links from noise and to supply a confidence level for 
assessing the probability that two nodes share a statistically significant number of co-occurrences. In particular, 
here we rely on the filtering procedure, based on the Bipartite Configuration Model (BiCM)61, developed by 
Saracco et al.53 for the projection of bipartite networks into monopartite networks, and subsequently adapted to 
a multi-partite setting by Pugliese et al.52. It must be however noted that no absolute criteria exists for the choice 
of the model, and that different null models can yield different  outcomes82. Here, we use a null model for the 
binary matrices M , in which the matrices are randomised except for some constraints we  impose83—in this case 
the average degrees of the nodes. The use of BiCM allows for a stricter filtering procedure with respect to other 
null  models82 and correctly takes into account the possible noise present in the input  data53,82,83. This class of 
models is based on the maximum entropy  principle84, which leads to the realisation of an ensemble � of bipar-
tite networks M̃ , where links are random but maximize the number of possible configurations which satisfy the 
imposed constraints. In the present case the entropy function:

is maximized under the constraint that the ensemble averages 〈. . . 〉� of the ubiquity of activities a (i.e., of green 
technologies τ and exported products π ) and of countries diversification of the random networks, ũa(t) and 
d̃c(t) respectively, must be equal to the observed ones (labeled without the tilde symbol):

Hence, these networks are random but preserve the information present in the empirical degrees.
The maximization procedure yields a probability distribution for each possible pair of country-activity nodes 

to be linked. Then, we use them to perform a direct sampling of the ensemble � . The ensemble is composed of 
a number of realisations of the null model; the number of realizations is established by considering the p-value 
threshold with which we choose to validate the links in the technology-product network. In particular, since 
our results are mostly set to a statistical significance of 95%, we construct ensembles consisting of 10000 reali-
sations of the null model. In such a way, a rough but conservative estimate yields a sampling error of 5 ‰. For 
each pair of null model realizations {M̃cτ (t1); M̃cπ (t2)} related to the green technology and exported product 
layers, we compute the corresponding null Assist Matrix of element Ãτπ (t1, t2) through a contraction as in Eq. 
(4) and therefore build an ensemble of 10000 realizations of null Assist matrices. Finally, for each possible green 
technology-product τ-π link we compare the empirical value Aτπ (t1, t2) with the 10000 null values of that same 
link. We are thus able to assess the statistical significance of our results: for example, if we want to select 95% 
significant links, we consider only links those with the empirical value higher than the corresponding null ones 
in at least 9500 cases out of 10000.

(4)Aτπ (t1, t2) =
1

uτ (t1)

∑

c

Mcτ (t1)Mcπ (t2)

dc(t2)
, with

{

dc(t2) =
∑

π ′ Mcπ ′(t2)

uτ (t1) =
∑

c′ Mc′τ (t1)

(5)S = −
∑

M̃∈�

P(M̃) ln P(M̃)

(6)�d̃c(t)�� = dc(t)
�ũa(t)�� = ua(t)
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Validation of the results for a specific time lag. As already stressed, our methodology allows us to build differ-
ent networks linking green technologies to exported products by varying the temporal dimension. We express 
the time dependence of the analysis through the time lag �T, the difference between the year t2 of the country-
product matrix  and the year t1 of the country-green technology matrix. Given the years present in the two 
data collections we employ, in our analysis we consider two time lags: �T = 0 and �T = 10 . We recall that 
our matrices refer to sums over 5-year intervals. To each of the two considered  time lags  we associate two 
different pairs of 5-year aggregate technology-product matrices: W(2012)− V(2012) and W(2017)− V(2017) 
for �T = 0 ; W(2002)− V(2012) and W(2007)− V(2017) for �T = 10 , where, by following equation (2), the 
number in parenthesis represents the last year in the five year interval. For each pair of matrices we follow all the 
steps described above—i.e., RCA and Assist Matric computation, and statistical validation of the links through 
the null model at a selected p-value—and we consider only the links that are statistical significant in both of 
them. For instance, the links represented in Fig. 2 are those that show 95% statistical significance in both the 
networks  obtained from W(2012)− V(2012) and W(2017)− V(2017) . Therefore, we  consider two levels of 
significance to validate our results. The first is the assessment of the links’ statistical significance through the null 
model that allows us to assign a confidence interval within which we exclude that the links are solely the result 
of noise. The second is the condition according to which we only consider links validated at a certain statistical 
threshold in both the pairs of green technology-product matrices for the selected �T : we believe this to be an 
important step for arguing that the know-how of a specific technology is transmitted to a product immediately 
or requires a time lag of 10 years, regardless of the specific years we are considering. Finally, it provides additional 
robustness to the analysis of our network beyond the adoption of the null model.

Data availability
The data that support the findings of this study are available from https:// www. oecd- ilibr ary. org/ scien ce- 
and- techn ology/ the- oecd- regpat- datab ase_ 24143 71441 44 (REGPAT) and https:// comtr ade. un. org/ (UN 
COMTRADE), but restrictions apply to the availability of these data, which were used under license for the 
current study, and so are not publicly available. Processed data on coarse-grained Assist matrices are however 
available from the corresponding authors upon reasonable request.
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