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1 Data Features

1.1 Green Patents
In this paper we look at patent data as a proxy of environment-related innovation (to which we will also refer
to as green technologies) that is increasingly becoming the golden standard in the literature to measure green
innovative activities, as it is widely available, it can provide an array of quantitative information on the nature
of the invention and its applicant or inventor, including their geographical location, affording in such away to
easily geo-localise patents both at country and local levels [1]. Moreover, and very importantly, patent data can
be disaggregated into increasingly fine-grained technological areas, allowing very specific green technologies to
be identified, also through keyword searches [2]. Green technology is particularly interesting because it shows
distinctive features with respect to non-green technologies, appears to be heterogeneous and encompasses many
domains of know-how. It has in fact been proven that the knowledge generation process behind the development
of these technologies substantially differ from non-green ones [3] and across geographical areas [4], but is linked
in non-trivial ways to the pre-existing knowledge base [5].
As a response to the increasing attention and concern about climate change and renewable energy generation, we
are witnessing a large increase of patent applications in environment-related domains: according to the European
Patent Office (EPO), in the last years there have been around 1.5 million patent applications in sustainable
technologies [6]. Searching for environment-related patent documents has, therefore, been a challenge, especially
because in the past documents relating to sustainable technologies did not fall into one single classification. In
2013 the EPO and the United States Patent and Trademark Office (USPTO) agreed to harmonise their patent
classification practices and developed the Cooperative Patent Classification (CPC) system, which encompasses
five hierarchical levels spanning from 9 sections to around 250000 subgroups and where codes starting with the
letters A to H represent a traditional classification of innovative activity in technological fields, while the Y
section [7] tags cross-sectional technologies. Here in particular we employ the Y02–Technologies or applications
for mitigation or adaptation against climate change retrieved from the OECD REGPAT database [8]. The
Y02 class consists of more than 1000 tags organised in 9 sub-classes and includes patents related to climate
change adaptation and mitigation (CCMT)1 technologies concerning a wide range of technologies related to
sustainability objectives, such as energy efficiency in buildings, energy generation from renewable sources,
sustainable mobility, smart grids and many others, the details of which can be found in Table 2 below and, in
a more synthetic fashion, in Table 1 of the manuscript.
Following the notation given in the manuscript, we have matrices W(t) from 1995 to 2019. The number of
countries (i.e. the number of rows in each matrix) are 48 (see Table 1). The number of columns are 44
technological fields corresponding to the CPC groups listed in Table S2. To build such matrices, each patent
family — i.e. each collection of patent applications covering the same or similar technical content — counting

1According to the United Nations Environmental Program (UNEP): "Climate Change Mitigation refers to efforts to reduce or
prevent emission of greenhouse gases. Mitigation can mean using new technologies and renewable energies, making older equipment
more energy efficient, or changing management practices or consumer behavior”[9]. However, it is important to notice that mitigation
does not necessarily goes hand in hand with sustainable and "green” practices. Some CCMTs, such as nuclear technologies, might
also pose threats on the environment or be polluting.
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as a unit and recorded in REGPAT is divided between all technology codes τ and all countries c with which it
is associated, following the procedure adopted in Napolitano et al. [10] and Barbieri et al. [11]. Therefore, each
element Wcτ(t) of the matrix represents the fraction of patent families associated with the country-technology
pair c − τ in year t.

1.2 Exported products
For the export data we resort to the UN-COMTRADE database [12], which provides the yearly trade flows
between countries, expressed in US Dollars. This information is provided at the product level, so that it is
possible to study in detail which countries are exporting a given amount of a given product in a chosen year.
The products in the dataset are classified according to the Harmonized System, a hierarchical classification that
allows to disaggregate the economic sectors from two digits (about 100 different product chapters) up to six
digits (about 5000 different product subheadings) codes. This degree of freedom is key to investigate the effect
of technological innovations at different levels of detail: in fact, we move from the links that green technologies
have with the export of entire product categories such as those related to the Machinery/Electrical sector to
those that they have with the export of detailed single products such as electric motors. We point out that since
importers’ and exporters’ declarations do not precisely coincide, suitable reconstruction algorithms are needed
in order to achieve a coherent and cleaned dataset. In order to do so, we adopt a global Bayesian optimization
approach to obtain a denoised dataset, as proposed by Mazzilli et al. [13]. The goodness of this procedure
is empirically confirmed by Tacchella et al. [14], who, by employing the denoised dataset, obtained a sizeable
increase in GDP forecasting performance.
From the trade flows we obtain the export matrices V(t), where t ranges from 2007 to 2017: the number of
rows, corresponding to the number of countries, is equal to 169 (see Table S1), while the number of columns,
corresponding to the exported products, depends on the level of aggregation considered (97 in the 2-digit case,
5053 in the 6-digit one). Thus, each element Vcπ(t) represents the volume of exports of the product π, expressed
in thousands of dollars, by the country c in year t.

1.3 Country list
Depending on which step of our analysis we deal with, we consider all countries included in each collection or
only those in common. In particular, the computation of the Revealed Comparative Advantage (RCA) is done
separately for patents and exports, thus including all countries in the respective datasets. On the contrary,
the calculation of the assist matrix is done by contracting the patent and export data over the geographical
dimension, and therefore we only consider those in common. In Table S1 we collect all the countries included
in both datasets, also writing their names in different colours depending on whether they are part of the 47
common countries between the two datasets or they are only present in one of them.
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Country full list
Afghanistan Albania Algeria Andorra
Angola Argentina Armenia Australia
Austria Azerbaijan Bahrain Bangladesh
Belarus Belgium Belize Benin
Bhutan Bolivia Bosnia Herzegovina Botswana
Brazil Brunei Bulgaria Burkina Faso
Burundi Cambodia Cameroon Canada
Cape Verde Central African Republic Chad Chile
China Colombia Congo Costa Rica
Croatia Cuba Cyprus Czech Republic
Democratic Republic Congo Denmark Dominican Republic Ecuador
Egypt El Salvador Equatorial Guinea Eritrea
Estonia Ethiopia Fiji Finland
France French Polynesia Gabon Gambia
Georgia Germany Ghana Greece
Greenland Guatemala Guinea Guinea-Bissau
Guyana Haiti Honduras Hungary
Iceland India Indonesia Iran
Iraq Ireland Israel Italy
Ivory Coast Jamaica Japan Jordan
Kazakhstan Kenya Kuwait Kyrgyzstan
Laos Latvia Lebanon Lesotho
Liberia Libya Liechtenstein Lithuania
Luxembourg Macedonia Madagascar Malawi
Malaysia Maldives Mali Malta
Mauritania Mauritius Mexico Moldova
Mongolia Montenegro Morocco Mozambique
Myanmar Namibia Nepal Netherlands
New Zealand Nicaragua Niger Nigeria
North Korea Norway Oman Pakistan
Panama Papua New Guinea Paraguay Peru
Philippines Poland Portugal Qatar
Romania Russia Rwanda Saudi Arabia
Senegal Serbia Seychelles Sierra Leone
Singapore Slovakia Slovenia Somalia
South Africa South Korea South Sudan Spain
Sri Lanka Sudan Suriname Swaziland
Sweden Switzerland Syria Tajikistan
Tanzania Thailand Togo Tunisia
Turkey Turkmenistan Uganda Ukraine
United Arab Emirates United Kingdom Uruguay USA
Uzbekistan Venezuela Vietnam Yemen
Zambia Zimbabwe

Table S1: All country list.
Legend: "Red-labelled country": included in both datasets (47 in total); "Green-labelled country": included in
green patents dataset only (1 in total); "Black-labelled country": included in exported products dataset only
(122 in total).
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2 Table S2: Y02-CPC detailed descriptions
As mentioned, we employ the Y02 class of the CPC patent classification to identify climate change mitigation
technologies and we thus have information on patent applications for 44 green technology groups. These are in
turn grouped into 8 subclasses, which are reported in Table 1 of the manuscript. In Table S2, we report the
codes and descriptions at the group aggregation level.

CPC subclass Description

Y02A

10 Adaptation to climate change at coastal zones
20 Water conservation
30 Adapting infrastructure
40 Adaptation technologies in agriculture
50 in human health protection
90 Indirect contribution to adaptation to climate change

Y02B

10 Integration of renewable energy sources in buildings
20 Energy efficient lighting technologies
30 Energy efficient heating
40 Improving the efficiency of home appliances
50 Energy efficient technologies in elevators
60 ICT aiming at the reduction of own energy use
70 Efficient end-user side electric power management
80 Improving the thermal performance of buildings
90 GHG emissions mitigation [Buildings]

Y02C 10 CO2 capture or storage
20 Capture or disposal of greenhouse gases

Y02D

10 Energy efficient computing
30 Reducing energy consumption in communication networks
50 Reducing energy consumption in wire-line communication networks
70 Reducing energy consumption in wireless communication networks

Y02E

10 Energy generation through renewable energy sources
20 Combustion technologies with mitigation potential
30 Energy generation of nuclear origin
40 Technologies for an efficient electrical power generation
50 Technologies for the production of fuel of non-fossil origin
60 Enabling technologies
70 Other energy conversion systems reducing GHG emissions

Y02P

10 Metal processing
20 Chemical industry
30 Oil refining and petrochemical industry
40 Processing of minerals
60 Agriculture
70 CCMT in the production process for final products
80 CCMT for sector-wide applications
90 GHG emissions mitigation [Production]

Y02T

10 Road transport of goods or passengers
30 Transportation of goods or passengers via railways
50 Aeronautics or air transport
70 Maritime or waterways transport
90 GHG emissions mitigation [Transportation]

Y02W
10 Wastewater treatment
30 Solid waste management
90 GHG emissions mitigation [Wastewater]

Table S2: Descriptions of environmental technology groups. In the first column (divided in turn into two sub-
columns) the CPC code identifying the technology group is reported. The second column adds the corresponding
group descriptions.
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3 Economic Fitness & Complexity algorithm
In Fig. 5 of the mauscript we order the codes related to green technologies and exported products according to
their level of complexity. The latter is intended as an algorithmic assessment of the number and the sophistication
of the capabilities needed to be competitive in a given activity. To compute it, we use the Economic Fitness
& Complexity (EFC) algorithm product [15, 16], originally introduced for exports but also applied to green
patents [4]. More in detail, it consists of a non-linear iterative algorithm that, starting from the binary matrices
Mca(t) obtained through the implementation of RCA detailed in the manuscript in the Methods section, allows
to quantify the complexity of the activities Qa and the competitiveness of the countries, namely their fitness
Fc, that perform in them. The mathematical formulation of the algorithm at each iteration n is as follows:
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where, in the left-hand bracket, the calculation of the fitness and complexity parameters for all countries and
activities is shown, while in the right-hand one is the following normalisation step. The non-linear structure
of the algorithm causes the activities in the baskets of less competitive countries (i.e. with low fitness) to be
assigned a low level of complexity. The most competitive countries turn out to be those with more diversified
activity baskets. Given the convergence properties of the algorithm, discussed in Pugliese et al. [17], we do not
consider the complexity values but their rankings. In particular, the ranking are computed using the most recent
5-year aggregate matrices given the years of the data we considered in the analysis: thus, we use Mcτ(5, 2017)
for green patents and Mcπ(5, 2017) for exported products.

4 Robustness test
In the manuscript we build the green technology-product bipartite network starting with two important pre-
liminary steps: firstly, we summed the yearly data collections at our disposal over 5 years; secondly, de-
pending on the time lag ∆T we consider, we select specific 5-year aggregate matrices. In particular, we
select the two most recent exported product matrices available to us that do not overlap each other — i.e.
V(δ, t) = {V(5, 2012); V(5, 2017)}, where δ corresponds to the interval of years over which the individual yearly
matrices are summed up (in this case 5), while the year t explicitly indicated corresponds to the last year of the
interval. Since the data collections of exported products are fixed for both time lags, we select the aggregated
5-year green patent collections depending on which of the latter we consider : therefore, we select the matrices
W(δ, t) = {W(5, 2012); W(5, 2017)} for ∆T = 0 and W(δ, t) = {W(5, 2002); W(5, 2007)} for ∆T = 10.
In this section we want to show that our results do not depend on the choices of the years considered nor on the
parameter δ. To this aim, we conduct a robustness test in which we repeat our analysis for both different values
of δ and years considered. In particular, we replicate our results for a 2-digit level of product aggregation and for
the time lag ∆T = 0. Considering the 10 years covered by the two 5-years summed data collections we consider
in the analysis for ∆T = 0 — i.e. from 2008 to 2017 — we create a dataset composed by 32 matrices (16 for
green patents and 16 for exported products) aggregated at 3,4 and 10 years, so that δ = {3, 5, 10}. The dataset
is reported In Table S3: each M(δ, t) in the table stands for a corresponding couple of technology-product
matrices W(δ, t) − V(δ, t) for which we process the full analysis, meaning RCA, assist matrix and null model
computations. We consider as a benchmark of this test the 46 links validated at a 95% level of significance in
the manuscript. The results we obtain can be summarized as follows:

• Considering only the aggregation over 3-year intervals, on average 73% of the 46 links are present at a
95% significance level. This percentage increases to 87% if we consider a 90% level of significance for the
3-year results.

• Considering only the aggregation over 4-year intervals, on average 80% of the 46 links are present at a
95% significance level. This percentage increases to 92% if we consider a 90% level of significance for the
4-year results.

• 85% of the 46 links are present at a 95% significance level for the unique pair of technology-product
matrices with the 10-year time aggregation. This percentage increases to 98% (45 links out of 46) if we
consider a 90% level of significance for the 10-year result.

5



Based on the above summary, we consider the robustness test successful. Therefore, we interpret the results re-
ported in the manuscript as showing a real link of interdependence between the acquisition of green technological
capabilities and the development of productive ones.

Time aggregation δ Data collections M(δ, t)

3
M(3, 2010), M(3, 2011), M(3, 2012), M(3, 2013)
M(3, 2014), M(3, 2015), M(3, 2016), M(3, 2017)

4
M(4, 2011), M(4, 2012), M(4, 2013), M(4, 2014)
M(4, 2015), M(4, 2016), M(4, 2017)

10 M(10,2017)

Table S3: Composition of the dataset we use for the robustness test of our results. Since we consider the time
lag ∆T = 0, data collections refer to both green patents and exported products.
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