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Abstract

With the introduction of the Black and Scholes (1973) and R. C. Merton (1973) (BSM) option
pricing model, researchers and practitioners have been continually looking to amend and extend
the model to improve performance. This thesis will take an alternative approach to addressing the
limitations of the BSM model. Rather than append an extension to the model by relaxing one or
more of the assumptions: R. C. Merton (1976), Derman and Kani (1994), Bakshi, Cao, and Chen
(1997) and Dumas, Fleming, and Whaley (1998), this thesis applied a suitable transformation to
the data to elicit more information relating to its distribution to ensure compliance with the BSM

assumption of normality. The aim is to identify the three stages that make up the foreign exchange
(FX) option price, namely:

i. Defining the constituent elements that explain the FX spot price to model the FX market
behaviour.

This thesis shows that the FX market can be represented by a system of attributes: order flow,
bid-ask spread and triangulation. These attributes, although transmit information unique to their
own function; also operate as a system to arrive at the quoted price. These elements will be used
to remodel the FX market behaviour in describing it as a stochastic price process.

ii. Represent the FX market behaviour by an appropriate stochastic price process.

The stochastic FX price process, characterised by the system of attributes describing the FX market,
defines the fundamental equation, adhering to the assumption of normality, to explain the FX option
pricing formula. The Kon (1984) discrete mixture of normal distributions model was utilised in
describing the market systemic function to arrive at the stochastic FX price process.

iii. Applying the BSM method to the fundamental equation proposed by the thesis afforded an
alternative FX option price model.

The collective affect of each attribute results in a skewed, leptokurtic distribution for the price
returns. The thesis demonstrates that the constituent pricing elements are normally distributed and
affect the price distribution by a proportionate shift parameter. The modified stochastic process
is the basis of the fundamental equation that is applied to the BSM methodology to arrive at an
alternative, modified closed form FX option pricing model.
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Under the presumption that the more exact the option pricing model the more accurate the
forecasting ability, the forecasting performance of each model was compared utilising risk reversal
options. Forecasting the movement in the FX spot market, the precision of the modified FX option
pricing formula was compared to the market leading BSM pricing model. Hence, accepting the
evaluation criterion as an indicator of the senior option pricing model, the result for the alternative
FX option pricing formula were very promising. The thesis clearly demonstrates that the modified
option pricing model outperforms the BSM model using trend reversal indicators but is not so
definite with the directional trend indicators. The encouraging initial results confirm the necessity
for this research and present opportunities for further study, namely,

i. What is the true number of N normal distributions in the Kon (1984) model? This will directly
impact the size of the variance shift parameter in the fundamental equations.

ii. What pricing information is contained in an option that can be used to forecast price movements?
Intuitively options contain information about forward pricing, thus interpreting this information
is central to any potential trading strategies.

iii. What is the appropriate trading strategy to extract forward pricing information contained in
an option offering a profitable opportunity?
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Chapter 1

Introduction

1.1 Motivation

The foreign exchange (FX) market is very large and very liquid. Trading in FX markets was averaging
$5.1 trillion per day in April 2016, increasing to $6.6 trillion per day in April 2019; comprising of
spot transactions, outright forwards, FX swaps, currency swaps, options and other derivatives,
see the Bank for International Settlements (BIS) Triennial Central Bank Survey. As well as spot
trades that made up $1.99 trillion per day of the market in April 2019, there is a large market
for derivatives, both futures and options, which accounted for $294 million per day in April 2019.
There are numerous foreign exchange options contracts that are widely traded, both for reasons of
risk control and speculation.

For European options the Black and Scholes (1973) and R. C. Merton (1973) (BSM) formula would
be appropriate if the returns on the underlying currency pair were independent and identically
distributed (i.i.d.) normally, or at least approximated by i.i.d. normality. Although there are
numerous competing theories about the evolution of exchange rates, notwithstanding these, the
empirical evidence shows that returns from foreign exchange positions are not i.i.d. normal. As
a consequence, the BSM formula may not be appropriate to price European currency options.
Further, it is widely accepted that the price of an option may represent a forecast of future spot
currency movements. If this is so, then it is self-evident that an accurate option model could lead to
improved forecasts of the spot rate. In the same way that i.i.d. normality in continuous time leads
to the BSM model, the different continuous time stochastic processes that have been reported in the
literature lead to different pricing models for European options both for foreign exchange and other
assets. That is, there is a strong linkage between appropriate return distributions, the consequent
structure of the corresponding option pricing model and any implicit forecast of future movements
in the underlying.

Option contracts, particularly foreign exchange, are highly traded and typically held short term. Not
surprisingly, empirical studies of exchange rate movements have benefited both from the advances in
computing power and in the development of models for high frequency data. Examples are the large
family of Autoregressive Conditional Heteroscedasticity (ARCH) and Generalised Autoregressive
Conditional Heteroscedasticity (GARCH) processes due to Engle (1982) and many others, and models
that deal ab initio with non-normality, for example finite mixtures and scale mixtures models. Many
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of these econometric time series models do not lend themselves to analysis in the continuous time
framework. However, the technicality can be avoided if the price of an option is thought of as the
present value of the expected payoff, generally under a risk neutral distribution.

Foreign exchange option prices can be used as an indicator of the underlying directional trend
of exchange rates. Garman and Kohlhagen (1983) (GK) developed a foreign exchange option
pricing model based on the BSM configuration; conceding the geometric Brownian motion asset
price behaviour, however based on alternative assumptions. A measure of how accurately the
Garman and Kohlhagen (1983) FX option pricing model uses the embedded hedging information is
an indication of how well specified the model is. In an attempt to answer this question Dunis and
Lequeux (2001) examined the informational value derived from a measure of the skewness of the
price distribution of a 25-delta risk reversal: an option position that consists of being short (selling)
an out-of-the-money put option and being long (buying) an out-of-the-money call option with the
same maturity. Risk Reversal prices are predicated on the call and put option prices derived from
the Garman and Kohlhagen (1983) FX option pricing model.

Option deltas are an indication of the degree to which the option is in-the-money or out-of-the-money.
The delta rises as options are increasingly in-the-money and reduce as the options move progressively
out-of-the money. At-the-money options have a value of 50-delta, suggesting a 50% likelihood
of either ending up in-the-money or out-of-the-money at maturity. Hence a 25-delta option is
out-of-the-money with only a 25% chance of ending in-the-money at maturity. Delta is the change in
the value of an option for an infinitesimal change in the exchange rate. A standard out-of-the-money
currency option offered in the interbank market is a 25-delta option, which means that the price of
the option would change 0.25% for a 1% change in the exchange rate. Thus a 25-delta option is an
indication of the degree an option is out-of-the-money.

Dunis and Lequeux (2001) considered the amount by which a 25-delta call option is more or less
expensive than a 25-delta put option with the same maturity as a buy or sell indicator of future
exchange rate movements. The information contained within risk reversals is analogous to the
net buying pressure of microstructure order flow in the FX spot market. Order flow is defined as
the net of positive (buyer-initiated) and negative (seller-initiated) orders and seen as a measure of
net buying pressure. A positive (negative) sum means a net buying (selling) pressure. Dunis and
Lequeux (2001) concluded that contrary to market expectation the one-month risk reversals did not
offer any embedded information that could be used profitably in directional forecasting. The same
conclusions as Dunis and Lequeux (2001) were drawn by taking a comparable empirical analysis to
three-month risk reversals.

Under the assumption that the unsatisfactory performance of risk reversals is attributable to the
failings of the Garman and Kohlhagen (1983) modified BSM model, given that the price returns
fail to comply with geometric Brownian motion which the model is based upon, this bodes the
question: can a respecified FX option pricing model more accurately use the embedded information
to improve the forecasting performance of the risk reversals?

1.2 Objective

The Black and Scholes (1973) and R. C. Merton (1973) (BSM) option pricing formula has become
the standard pricing model adopted by the majority of market practitioners; with only a minority
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dissenting: Haug and Taleb (2011). The BSM breakthrough approach leads to a pricing formula
using, for the most part, only observable variables. In particular the formula does not require
knowledge of either the investors preferences or beliefs about expected returns on the underlying
asset. Moreover, under specific posited conditions, the formula must hold to avoid the creation of
arbitrage possibilities. However the derivation is dependent on unrealistic assumptions: Dremkova
and Ehrhardt (2011), Henderson (2014), Janková (2018) and Krznaric (2016). The Black and
Scholes (1973) and R. C. Merton (1973) solution is not valid when the asset price dynamics cannot
be represented by a stochastic process with a continuous sample path. In essence, the validity of
the formula depends on whether the asset price returns observe a log-normal distribution. That is,
the stochastic price process is a geometric Brownian motion. This presumes that the asset price
returns are normally distributed.

This thesis will focus on the assumption that the asset price follows a geometric Brownian motion
with constant drift µ and constant volatility σ. Thus the distribution of prices at the end of any
finite interval is log-normal and the variance rate of the return is constant. FX option pricing models
disappoint by virtue of the foreign exchange price behaviour being inconsistent with the geometric
Brownian motion model describing the asset price behaviour.

The aim is to identify the three sections that constitute the price of FX options to arrive at an
alternative option pricing formula, namely:

i. Determine the systemic attributes of the FX market: Chapters 2 and 3.

ii. Apply these systemic attributes as the basis for arriving at the stochastic FX price processes
that conforms to the assumption that the price process follows a geometric Brownian motion
(GBM) through time. Thus arriving at a log-normal distribution for price returns between any
two points in time: Chapters 4 and 5.

iii. Employ this stochastic FX price process to the BSM methodology to arrive at an alternative
FX pricing model: Chapters 6 and 7.

1.3 Data Source and Procedure

The Refinitiv Eikon trading system, formerly Thomson-Reuters, provided the data for this study.
The spot exchange rate price history comprises the best bid, mid and ask quotes and time-stamped
to the nearest second: Chapter 3. The spot exchange rate and 25-delta risk reversal price history
comprises the best bid, mid and ask quotes and time-stamped to the daily closing price: Chapters
5 and 7. No information as to the transaction size or trading parties is given.

Attempts to improve the performance of the Black and Scholes (1973) and R. C. Merton (1973)
option pricing model have focused on enhancements to the original model by relaxing one or more
of the assumptions: R. C. Merton (1976), Derman and Kani (1994), Bakshi et al. (1997) and Dumas
et al. (1998). However, the enhanced models are still contingent upon the returns conforming to
the normally distributed geometric Brownian motion. These models do not address the fact that
asset price returns are skewed: frequency distributions which are not symmetric, and leptokurtic:
a series which has a higher peak at the mean and fatter-tails than a normal distribution with the
same mean and variance.
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The limitations of the BSM pricing formula should not be regarded as the consequence of model
misspecification. Rather the limitations are due to the shortcomings of the asset price returns
not conforming to geometric Brownian motion, which the BSM model is based upon. Presuming
the asset price returns non-compliance to geometric Brownian motion undermines the BSM option
pricing formula, then all models based on BSM are possibly flawed.

This analysis will take an alternative approach to addressing the limitations of the BSM model. In
place of modifying or appending to the BSM model, this thesis will interrogate the characteristics
of the data that cause a divergence from assumed normality. The aim is not to augment the BSM

model but to respecify the data so it complies with it. The thesis will address the limitations that
pertain to the underlying asset by not acceding to geometric Brownian motion in respecifying the
BSM formula. This infraction of the geometric Brownian motion model impairs the performance of
the BSM formula. Seeking to explain the asset’s distributional behaviour and how it can be modified
to conform to i.i.d. normality can potentially elevate the performance of the BSM model.

Taking an empirical approach to the FX macroeconomic fundamentals and microstructure finance:
Chapters 2 and 3, and a theoretical approach to FX stochastic modelling: Chapters 4 and 5, this
thesis will attempt to explain the FX market price behaviour. A new FX option pricing formula
will then be derived by applying the BSM methodology to the empirical and theoretical model that
embraces the FX price behaviour: Chapters 6 and 7. The forecasting performance of this new FX

model will then be evaluated against the market standard BSM risk reversals on the basis that the
better model should result in greater forecasting accuracy.

1.4 Contribution

Foreign exchange options are used to forecast currency directional changes. A measure of how
accurately the option pricing model uses the embedded hedging information is an indication of how
well specified the model is. The better the specification of the FX option pricing model the more
accurately it conveys the exchange rates to the FX market. The information contained can then
be utilised by practitioners as a future buy or sell indicator in the foreign exchange market. Any
alternative option pricing model needs to be used by market practitioners.

The thesis makes the following contribution to the literature:

i. Identifying the systemic attributes: order flow, bid-ask spread (discreteness and clustering)
and triangulation, as the information transmission mechanism for the microeconomic foreign
exchange market.

ii. A study of appropriate econometric models for daily returns on a number of leading currency
pairs.

iii. Use of the derived stochastic model to arrive at an alternative pricing model for European
option contracts for these pairs.

iv. Derivation and testing of a closed form option pricing formula that can be used by market
traders to forecast future spot returns based on risk reversals derived from the modified option
pricing model.

4



CHAPTER 1. INTRODUCTION F. Josephidou

The empirical results proved promising, the modified option pricing model outperformed the BSM

pricing model for trend reversing strategies, although not conclusive. This presents avenues of
further research, namely:

i. Refining the process of identifying the N normal distributions of the return price.

ii. Identifying what information is embedded in the FX option that can be used to forecast the
future movements of exchange rates.

iii. Develop an appropriate option based forward trading strategy rather than the currently used
spot trading strategy adopted by traders.

1.5 Structure of the Thesis

The structure of the thesis consists of three parts: determining the systemic attributes of the FX

market, identifying the stochastic FX price process and deriving and evaluating an alternative FX

option pricing model, and is laid out as follows:

Chapter 1 is the introductory chapter. It provides motivation for the research and outlines the
objectives and the main contributions made.

Chapter 2 provides an overview of the foreign exchange market and sets out the argument for the
microeconomic over the macroeconomic approach of practitioners. It then presents a review of
existing literature detailing the price dynamics of the foreign exchange market. The price dynamics
are explained with the introduction of the information transmission mechanism. The rationale for
the mechanism is discussed with respect to the information flow between practitioners and how
this flow creates the market and ultimately determines the exchange rate. Chapter 3 presents
the empirical work determining the composition of the bid-ask spread and how it relates to the
FX market features of triangulation, discreteness and clustering in defining the constituents of the
transmission mechanism to arrive at the systemic attributes of the FX spot price.

Chapter 4 presents the properties of the price processes: diffusions, jumps and a mixture of both,
adopted by alternative pricing models. The literature review explores the stochastic price process of
returns for the leading pricing models and evaluates their attributes. These processes are evaluated
against the systemic attributes of the FX market identified in Chapter 3 to arrive at a stochastic
process that captures these features and maintains the i.i.d. normality required by the BSM model.
The empirical work in Chapter 5 applies the discrete mixture of normal distributions stochastic
stock process to the attributes of the FX market whilst adhering to i.i.d. normality. This chapter
defines a stochastic FX process to arrive at the fundamental FX option differential equation.

Chapter 6 introduces the derivation of the BSM stock option pricing model and highlights the
alternative models to the BSM formula. The literature review examines the relationship between the
BSM stock model and the FX option pricing model, contrasting the assumptions and methodology of
each. It also presents risk reversals and outlines the function they play in forecasting exchange rate
movements. Chapter 7 applies the discrete mixture of normal distributions to the BSM methodology
in deriving a modified FX option pricing model. This model is then used to derive risk reversals
differenced by price and not implied volatility. The derived and market defined risk reversals are
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then used to evaluate the modified FX option pricing model with the standard BSM model by
comparing the forecasting performance of each model under the proviso that the better model
should more accurately forecast the movement of exchange rates.

Chapter 8 summarises the results, provides the implications of the modified FX pricing model based
on this analysis, highlights the limitations of the research and presents future research opportunities.

There are numerous appendices containing the following:

Appendix A contains the summary statistics for the data sets used throughout the thesis and details
the test statistics for the empirical work contained in Chapter 3.

Appendix B details the properties of the price processes outlined in Chapter 4.

Appendix C details the mathematical properties of the stable paretian distribution probability laws
outlined in Chapter 4.

Appendix D presents the lemmas underpinning the compound events model detailed in Chapter 4.

Appendix E details the discrete mixture of normal Distributions test statistics for the empirical
work contained in Chapter 5.

Appendix F details the statistical analysis of skewness and kurtosis contained in Chapter 5.

Appendix G details the Black-Scholes methodology and assumptions contained in Chapter 6.

Appendix H contains the python code used to evaluate the χ2, Standardised Range (SR), attraction
and resolution tests detailed in Chapter 3.
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Chapter 2

The Foreign Exchange Market

This chapter introduces the notations used in the foreign exchange (FX) market from a practitioner’s
point of view. The purpose of this chapter is to highlight the unique nuances of the FX market and
review the relevant literature. FX risk considerations have an added level of complexity not present
in the equities market. In equities it is clear whether one is considering the upside or downside
risk when holding a long position in stock. Conversely currencies are traded in pairs; you are long
on one side of the trade whilst simultaneously short the other. In the case of a British pound
(GBP) based investor who is long in US dollars (USD) and commensurately short GBP: the investor
sells GBP to buy USD, the risk considerations pertain to both sides of the trade. To understand
the market behaviour the trading strategies deployed by participants are surveyed, contrasting
technical with fundamental analysis and appraising the relevance of macroeconomic fundamentals
and microstructure finance to explain the FX market.

For British pound against the US dollar, with ISO codes GBP and USD respectively, the market
standard quote of GBPUSD represents the number of USD per GBP, writing a slash (’/’) between the
currency ISO codes, such as GBP/USD would read GBP per USD which is incorrect. However, to aid
the reader the GBP/USD notation will be adopted throughout this work but suggests it is read as
USD per GBP.

2.1 The Fundamentals of Foreign Exchange

2.1.1 The Mechanics of the FX Market

The form of foreign exchange (FX) transactions is simply exchanging a certain amount of one
national currency for a certain amount of another realm. Unlike other asset classes, in foreign
exchange there is no natural numeraire currency and the choice of which way round currency pairs
are quoted is purely market convention. Bank interdealers may state foreign exchange quotations
in one of two ways:

i. The foreign currency in terms of one US dollar, in so-called European terms, for example
USD/JPY.
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ii. The US dollar price of a unit of a foreign currency, American terms, for example EUR/USD.

Which way round they are conveyed in the market is determined by the ISO standards. Foreign
exchange quotes can be described as either direct or indirect spot rates. A direct quote is the
domestic currency price of a unit of foreign currency. An indirect quote is the foreign currency price
of a unit of domestic currency. Take a GBP/USD quote priced in US dollars: this spot rate, S, is a
direct quote for a dollar investor and an indirect quote from a sterling viewpoint. It follows that
the reciprocal spot rate, 1

S , is a direct quote for the sterling investor and indirect for the dollar side.
Regardless of how the price is quoted, either as S or the reciprocal 1

S , it does not have a bearing on
the exchange rate. For consistency the ISO notation will be advocated throughout this work.

Adopting the ISO standards for a currency (ccy) pair quoted as ccy1ccy2, the spot rate St at time
t is the number of units of ccy2, known as the domestic or quote currency, required to buy one
unit of ccy1, known as the foreign or base currency, quoted in terms of the domestic currency.
The spot rate is therefore equal to the units of ccy2 per ccy1. For example the British pound, US

dollar (GBP/USD) quote is for the number of US dollars required to buy one British pound with the
price quoted in US dollars. The spot rate, St, links the notional amounts that one currency can be
exchanged for another. It follows that a factor of St notional units of Nf foreign currency is equal
to Nd notional units of domestic currency

Nd = Nf · St , (2.1)

conversely Nd notional units of domestic currency per the spot rate St is equal to Nf units of foreign
currency

Nf =
Nd

St
. (2.2)

As spot rates are quoted to finite precision, the last significant digit is called the pip and represents
the smallest price increment. The headline figure in the exchange rate, which is often assumed when
quoting a rate, is 100 pips. For example if the spot rate for USD/JPY is 113.45, the headline figure
is 113 and there are an additional 45 pips. Conversely, if the spot rate for EUR/USD is 1.1336, the
headline 100 pips figure is 1.13 and there are an additional 36 pips.

FX instantaneous trades are executed in the FX spot market at the today date with the exchange
of funds, settlement, happening at the spot date, which is most commonly two business days later.
The settlement risk associated with these transactions is that one side of these payments does not
go through while the other side does. Alternatively an investor long in one currency could exchange
a nominal amount at a future date by executing the trade in the FX options market to protect
against the depreciation of one currency against another over a period of time. If an FX option with
a stated expiry date is exercised at the prearranged strike price then the expiry date is equivalent to
the today date and the delivery date equivalent to the FX spot date. Consider an investor holding
sterling and intending to buy dollars in six months time. They could buy a put (sell) option on the
GBP/USD exchange rate to sell GBP and buy USD in six months time, at a prearranged strike price.
This removes the downside risk at the cost of the option premium.
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The foreign exchange market is highly liquid. The market is open 24 hours a day from 5:00 p.m.
EST (9:00 p.m. GMT) on Sunday until 4:00 p.m. EST (8:00 p.m. GMT) on Friday. Trading in
FX is not done at one central location, but is conducted between participants by phone and
Electronic Communication Networks (ECN) in markets around the world. The FX market has
a decentralized multidealer structure. Two implications of decentralisation are fragmentation and
lack of transparency: Sager and Taylor (2006).

A highly active interdealer market has developed with institutions located throughout the globe.
The share of trading between reporting dealers executing trades and managing risk on their accounts
and on behalf of their customers, defined as financial institutions identified by national central banks
that report in the Triennial Survey, accounting for 38% of turnover in April 2019, compared with
42% in April 2016. Banks other than reporting dealers accounted for a further 24% of turnover in
2019. Institutional investors were the third largest group of counterparties in the 2019 FX markets,
at 12%. Sager and Taylor (2006) identify four types of dealers:

i. Market-makers: facilitating access to interdealer liquidity and providing best execution for
customer trades.

ii. Spot or Leverage traders: trade on the basis of the net buy-sell orders executed by the bank’s
trading desk with an investment horizon of a few hours, or at most days.

iii. Proprietary traders: intra-day traders whose investment time horizon extends from minutes to
hours at most.

iv. Senior risk takers: perform a similar function to spot traders at large investment banks, but
are allocated a much larger risk budget.

Participants offer to make two-sided quotes to other active dealers in return for receiving the same
service. FX dealers in major currencies have access to well-developed interdealer markets and
operate in a largely unregulated environment: there is no single regulatory body in this market.
Dealer trades are not made public, and no transaction price or volume data for the broad market
is available.

Customers interact with dealers in the management of currency exposure. Customer buy-sell
orders are the most important source of private information in the foreign exchange market. An
understanding of the behaviour of an exchange rate at a given time requires knowledge of the types
of customers prevalent in the market at that time and of the ways in which they trade and interact
with the wider market. Sager and Taylor (2006) categorised customers as:

i. Passive: inherit foreign exchange exposure from the sale and purchase of underlying assets
which are either hedged or unhedged.

ii. Active: add value to underlying portfolios by implementation of appropriate active hedging
strategies.

iii. Informed: these include large central banks who observe data relevant to their own currency in
advance of other market participants and informed banks who take a bilateral inventory from
their customs.

9



CHAPTER 2. THE FOREIGN EXCHANGE MARKET F. Josephidou

iv. Uninformed: those customers not categorised as informed.

The 2019 Bank for International Settlements (BIS) Triennial Central Bank Survey states that 93
percent of all FX trades taking place are between banks and other financial institutions. Therefore
it is reasonable to assume that the net transaction orders a dealer sees from active and informed
customers is a small part of the total trade being executed. Orders between banks and other
financial institutions are likely to be fed into the market throughout the current trading session. This
information will enable a dealer to either consolidate or net-off their trading positions. Participants
can execute a trade in one of two ways:

i. Submitting a market order for immediate execution at the best-available current price.

ii. Submitting a limit order for execution at a specified price or better.

Lyons (2001) noted that in the electronically-traded interdealer FX market approximately two thirds
of the total spot volume is between dealers dealing on their own accounts: dealer to dealer rather
than customer to dealer, thus setting the mid-price that banks use to quote bid-ask spread spot
prices to their customers.

2.1.2 Economic Fundamentals and Technical Analysis

Macroeconomic Fundamentals

The Dornbusch (1976) overshooting theory implies that foreign exchange rates will temporarily
overreact to changes in monetary policy. This overreaction creates a new equilibrium in the
short-term to compensate for the sticky prices of the goods in the economy, which are resistant
to change. This means in the short-term the new equilibrium level will be reached through shifts in
financial market prices only, not through shifts in the prices of goods themselves. As this resistance
to a change in the price of goods gradually diminishes in the long-term, the prices of goods begin
to respond to the changes in the financial markets, creating a new long-term equilibrium.

Frankel and Froot (1990) used the overshooting theory of exchange rates to explain some aspects of
the movement of the dollar in recent time. They attributed this theory to the dollars movement over
the period 1981-1984 when real interest rates in America rose above those of their trading partners,
causing the dollar to appreciate significantly. The overshooting theory proposes that as of 1984 the
value of the dollar was so far above its long-run equilibrium that expectations of future depreciation
were sufficient to offset the higher nominal interest rate in the minds of international investors.
Consequently the value of the currency had moved above its long run equilibrium, departing from the
value expected from macroeconomic fundamentals. Given that standard macroeconomic variables
are not adept at explaining, never mind predicting ex ante short term changes in the exchange rate,
a possible justification is that the short-term adjustments are rational corrections of the perceived
disequilibrium not detected by macroeconomic fundamentals.

An alternative view is the movement is independent of the fundamentals, explained by the existence
of a spike in the asset value. This self-confirming market modification, known as a speculative
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bubble, assumes that all market associates are rational and operate as a single entity. The speculative
bubble demands that the market’s expectation of the future exchange rate is collectively known by
all participants. Participants have homogeneous expectations. However the market shows evidence
of heterogeneous expectations. With trading in FX markets averaging $6.6 trillion per day in
April 2019, see the Bank for International Settlements (BIS) Triennial Central Bank Survey, and
with 93 percent of all trades taking place between banks and other financial institutions, the trading
volume supports the heterogeneous argument: it is the differences in professionals’ expectations, not
their commonality that explain why they trade. Taylor et al. (1995) note that the macroeconomic
fundamentals are clearly important in setting the parameters within which the exchange rate moves
in the short term, but they do not appear to tell the whole story. They note that attempts to provide
explanations of short-term exchange rate movements based solely on macroeconomic fundamentals
may not prove successful. It is in this context that the emerging literature on foreign exchange
market microstructure seems especially promising.

Chartists and Fundamental Analysts

If traders trade by extrapolating recent trends: momentum trading or bandwagon expectations,
this can potentially magnify significant swings in the exchange rate. Technical analysts known as
chartists, use extrapolative methods such as the spot rate crossing the moving average rate from
below as an indicator to buy or from above as an indicator to sell. Conversely analysts that rely on
macroeconomic fundamentals are identified as fundamentalists.

Chartists are traders who base their strategies on the analysis and extrapolation of past price
movements. Chartists only study the price action of the market; whereas fundamental analysts
attempt to look to the reasons behind that action. The chartist supposes that the price contains
all the information pertaining to the market: economic and non-economic, rational and irrational,
the tensions of demand and supply; therefore the price incorporates the fundamentalist views by
default.

Basic chart analysis involves visually identifying recurring patterns in time series price data. Certain
configurations, known as reversal patterns, are taken to indicate the imminent reversal of a trend.
The most famous of these is the ’head and shoulders’ formation: Edwards and Magee (2018). Other
configurations may be judged to be continuation patterns, patterns that occur within established
trends: Murphy (1986). Chartists define upper and lower limits of expected price movements,
termed resistance and support levels respectively. Chartists look for automated trend following and
non-trend following indicators. A trend following indicator to buy is signalled when a short moving
average cuts a longer moving average from below. Conversely a non-trend following indicator might
be to price the asset anticipating a market correction, assuming an asset has been overbought or
oversold. Clearly, chart analysis has a large subjective element.

Allen and Taylor (1990) looked at the empirical evidence of the impact that chartists or technical
analysts have on the London foreign exchange market by conducting a questionnaire survey of the
chief foreign exchange dealers. Defining noise traders as dealers who do not base their trading
strategies on macroeconomic fundamentals clearly classifies chartists as noise traders. Allen and
Taylor (1990) found that the vast majority of traders integrated chartism into their short term
(intraday-to-one week) trading strategy. As the forecast timeline extended from one to 12 months
the reliance on fundamental analysis became more significant; with a clear shift in favour of
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fundamental analysis for horizons over 12 months. Speculators use these extrapolative techniques
to forecast short term horizons, contrasting theories such as Purchasing Power Parity (PPP) used
to forecast a long-run equilibrium.

The question is which is the more prevalent forecasting method; extrapolating short term technical
analysis or long term macroeconomic fundamental expectations, and what are the consequences on
the market?

The premise behind speculative bubbles suggests that the market has moved away from fundamental
analysis and towards technical analysts or chartists in response to the inferior forecasting record of
the former. Frankel and Froot (1990) demonstrated support for this theory from the Euromoney
yearly survey from 1978 to 1985 of between 10 and 27 foreign exchange trading firms. The survey
revealed that the overwhelming majority in 1978 relied exclusively on macroeconomic fundamentals
and only two on technical analysis. By 1985 the position had reversed. Only one firm exclusively
used fundamentals and the majority using technical analysis. The suggestion is that over time the
migration to different forecasting techniques have contributed to large exchange rate movements,
which have taken place with little reference to macroeconomic fundamentals. This accounts for the
shift toward more purely financial models of exchange rate movements and heightened interest in
market microstructure.

Does the move towards microstructure finance explain the FX market, defining a potential pricing
model?

2.2 Literature Review

2.2.1 Exchange Rate Dynamics

There have been three approaches to exchange rate determination since the Bretton Woods conference
of 1944: goods market, asset market and microstructure market approach.

The pre-1970s goods market approach based its demand for currencies from the purchase and sales
of goods. The pre-1970s exchange rates were fixed but adjustable. The rates were negotiated at the
Bretton Woods international conference, fundamental to the system overseen by the International
Monetary Fund (IMF), and in effect from 1945 until 1971; superseded by floating rates in 1973.
Despite its intuitive appeal the data showed that exchange rate movements in foreign exchange
(FX) markets are virtually uncorrelated with trade balances. Lyons and Moore (2009) noted that
real trade flows or balance of payments, are but a small component of currency transaction flows.
It would seem rational to analyse the long-run exchange rate behaviour by considering standard
macroeconomic fundamentals, emphasising international trade flows and the accompanied change
in the exchange rate for its determination. However, Dornbusch (1976) and Choi (2011) noted that
this approach does not distinguish the adjustment speed between the goods and money markets:
one lags the other. In essence it is not the gross amount of trading that matters but rather its
composition.

The goods market approach was superseded by the asset market approach in the 1970s. Building
on the former and recognising that currency demand also came from the purchase and sale of
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assets. The asset market approach introduced the concept of market efficiency: exchange rates
incorporated all publicly available information. Empirical work did not support the asset market
approach. R. Meese and Rogoff (1983) showed that the asset market models were no better than
’no change’ random walk forecasting models and could not consistently get the direction of change
right.

The third approach to exchange-rate determination is the microstructure approach. Although based
on the asset market approach: demand for currencies comes from the purchase and sale of assets,
what differentiates the microstructure approach is that it relaxes three key assumptions of the asset
market, namely:

i. Information: some relevant information is not publicly available.

ii. Players: market participants differ in ways that affect prices.

iii. Institutions: trading mechanisms differ in ways that affect prices.

R. Meese and Rogoff (1983) compared the performance of a microstructure model against a standard
macroeconomic model and a random walk. They found that the microstructure model consistently
outperformed the alternatives. They concluded that macroeconomic models of exchange rates
perform badly at frequencies higher than one year and that fundamental variables are poorly
correlated with high frequency exchange rate movements.

Although empirical evidence suggests that standard macroeconomic fundamentals may influence
the long-run behaviour of exchange rates, Sager and Taylor (2006) noted that when applied to
shorter-term exchange rate models the forecasts quality proved to be perilous. Indeed R. Meese
and Rogoff (1983) and R. A. Meese (1990) state that the explanatory power of such macroeconomic
models is essentially zero.

Given that traditional macroeconomic approaches are not consistent with high frequency data,
Flood and Taylor (1996) noted that our understanding of the short run behaviour of exchange rates
is unlikely to be enhanced by further examination of the macroeconomic fundamentals. Flood
and Taylor (1996) advocated that a new work on the microstructure of the foreign exchange
markets seemed both warranted and promising. This thesis will concentrate on the microstructure
determinants of the FX spot rates.

Evans and Lyons (2002) proposed a microstructure approach, highlighting variables that play
no part in macroeconomic modelling but become integral to microstructure finance. The most
important of these variables are order flow and bid-ask spread. Therefore in questioning the
microstructure approach to understanding exchange rate behaviour this thesis asks the following
question: does the microstructure approach offer an explanation of the FX market and avail itself
to a model?

Microstructure Variables: Order Flow

The quality of macroeconomic fundamental based exchange rate forecasts can be improved by the
microstructure measure of order flow. Sager and Taylor (2006) inferred that order flow allows
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the wider market to learn about the private information and trading strategies of better informed
participants. Order flow is defined as the net of positive: buyer-initiated and negative: seller-initiated
orders and seen as a measure of net (positive or negative) buying pressure. A positive (negative) sum
means a net buying (selling) pressure. Order flow is closely related to price in these models because
of the information it conveys to the market and can be regarded as the transmission mechanism
that maps information to price. Evans and Lyons (2002) explain that order flow employs public
information regarding:

i. The expectations of the participants.

ii. Transaction standings.

iii. Macroeconomic fundamentals.

Accepting that order flow and nominal exchange rates are strongly correlated, Evans and Lyons
(2002) determined that interdealer order flow drives the exchange rate via information aggregation.
They noted that prices increased with an increase in net buying pressure. The intuition is that
uncertain public demand for foreign exchange is realised at the start of each day. This produces
orders that are not publicly observable so the information these orders convey is aggregated into
the trading process. These demands affect price because the rest of the market, being less than
perfectly elastic, require a price concession to absorb them.

Lyons (2001) considered how microstructure theory emphasises the role of order flow in determining
the price of foreign exchange (FX) spot trades within a large bank. Lyons (2001) noted that despite
his presumption that exchange rates depended on macroeconomic variables: inflation, output,
interest rates, etc. only rarely was news of this type a primary concern to FX traders. This
highlighted a gap between macroeconomics exchange-rates on the one hand and microstructure
finance on the other. Frankel and Rose (1995) go further and state that there is little evidence that
macroeconomic variables have consistent strong affects on floating exchange rates. One can draw a
logical conclusion that macroeconomic fundamentals do not lend themselves to modelling the high
frequency FX market.

Microstructure Variables: Bid-Ask Spread

The spread is a transaction cost. Liquidity theory affirms that the bid-ask spread is increased by a
rise of transaction cost and volatility and inversely associated with liquidity, order flow and major
currency pairs: Sarkissian (2016). The bid-ask spread is the difference between the highest price
that a buyer is willing to pay for an asset and the lowest price that a seller is willing to accept to
sell it. The FX market requires no legal maximum of the bid-ask spread range.

The field of microstructure finance sought to separate itself from rational expectation models which
abstract from the trading mechanisms. The premise being that trading mechanisms have little
affect on the relationship between the fundamentals and price. Microstructure finance raises the
question of how does modifying an aspect of the trading mechanism: dissipating information and
transaction costs; alter the price in an order driven market? This question addresses the attributes
of the bid-ask spread and their impact in determining the market FX rates.
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Bid-Ask Spread Determinants

Huang and Masulis (1999) considered the effects of dealer competition in determining the bid-ask
spread in the spot foreign exchange market. Dealer activity in the market is appraised by the
number of dealers entering quotes per 15-minute period. Dealer activity is associated with market
depth and the ease with which dealers can offload unwanted inventory. Huang and Masulis (1999)
found that bid-ask spreads decrease with an increase in dealer competition. Conversely, adversary
theory suggests that an increase in the exchange rate volatility causes spread risk to increase. The
reduction in order flows and volume will also widen the spread.

Huang and Masulis (1999) interpreted the association of time-varying bid-ask spreads and the
number of active dealers as a short-run equilibrium outcome resulting from random deviations of
the long-run level of net customer transactions and dealer entries and exits. Such deviations are
driven by profit maximization. Huang and Masulis (1999) suggest that in the short run, a variation
in the number of dealers is caused by:

i. The behavioural characteristic of customer order flow.

ii. Current dealer inventory positions.

iii. Current and near term market depth.

iv. Inventory risk considerations.

Previous studies of FX spreads focused on the effect of exchange rate volatility: presumed to impact
bid-ask spreads by positively affecting dealer risk bearing. The differing market microstructure
models of spread determination show that competition is a prime component of bid-ask spreads.
Ho and Stoll (1983), Biais (1993) and Glosten (1994) found that as the number of dealers rises, the
bid-ask spreads of individual dealers fall because the expected best bid and ask quotes of rival dealers
are more competitive. Dealer spreads also can vary if dealers have differential access to information
on the state of the market: large banks tend to quote more aggressively than small banks due to
their information advantages. Huang and Masulis (1999) found that FX bid-ask spreads culminate
in the interaction between two factors:

i. Institutional: due to the structure of the FX market and informational advantage.

ii. Behavioural: due to dealer competition, dealer quotes and inventory adjustments.

If a dealer does not want to increase their position materially, then less aggressive bid and ask
quotes are offered, which result in a higher spread. Huang and Masulis (1999) concluded that
dealer competition is an important determinant of bid-ask spread.

In breaking down the constituents of the bid-ask spread; whether a given trade is transacted near
the prevailing bid quote or the prevailing ask quote, McGroarty, ap Gwilym, and Thomas (2007)
looked at the trade indicator models. These models relate the time series of returns to the side of
the trades. Trades oscillating between the two sides identify the spread and enable its measurement.
The most general spread decomposition model is given by Huang and Stoll (1997). This model was
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built around the equity based, market-maker centric NYSE that does not conform to the electronic
interdealer order-driven spot FX market. McGroarty et al. (2007) revised the specification of the
bid-ask spread decomposition model to take account of particular features of electronic order driven
markets. Limit order driven bid-ask spreads are determined by the risk of the orders not being
executed. When the risk is low the spread is wide, traders then submit limit orders in preference to
market orders, narrowing the spread. In an order driven market non-execution risk is lower when
the volume is high and volatility is low. However order-driven microstructure literature assumes
that informed traders chose to submit market orders in preference to limit orders. Bloomfield,
O’Hara, and Saar (2005) found the reverse to be true, traders are more likely to submit limit orders
than market orders. Huang and Stoll (1997) estimated a basic trade indicator model of spread
components, noting that three variables make up the general decomposition models:

i. The unobservable underlying value of stock in the absence of transactions costs, Vt, determined
just prior to the posting of bid and ask quotes at time t.

ii. Midpoint quote, MPt, from the prevailing bid and ask quotes before a transaction.

iii. The buy-sell indicator variable: order flow, oft, for the transaction price, TPt.

McGroarty et al. (2007) revised the model for the electronic order driven markets. McGroarty et al.
(2007) argued if informed traders are setting prices, the underlying value Vt is solely determined by
public information shocks: εt, given by

Vt = Vt−1 + εt where εt ∼iid N(0, σ2) . (2.3)

An interim variable V ∗t , representing the disturbed value of Vt by a buy-sell imbalance, consistent
with the mechanism of an order-driven market is

V ∗t = Vt + β
Sd
2

t−1∑
t=1

oft , (2.4)

where oft is the order flow trade indicator variable and takes the value +1 when the transaction is
initiated by the buyer, −1 when initiated by the seller and 0 when neither party can be identified as

initiator. The spread is Sd and thus
Sd
2

is the half spread and β is the temporary buy-sell imbalance

component. The midpoint quote, MPt, can now be identified as a function of V ∗t

MPt = V ∗t − α∗
Sd
2
oft , (2.5)

where α∗ is the private information component. The choice facing every trader is whether to submit
a limit order or a market order. Aggressive buying and selling by an informed trader translated
into aggressive limit orders will narrow existing bid-ask spreads, enticing traders on the opposite
side to submit market orders over limit orders. Thus an upward revision of the price triggers a sell,
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producing a negative relationship between MPt and oft. Thus the McGroarty et al. (2007) modified
trade indicator model becomes

∆TPt = (1− α∗) Sdt
2
oft + (α∗ + β − 1)

Sdt−1

2
oft−1 + et , (2.6)

where ∆TPt is the return defined as the change in transaction price and oft is order flow. The error
term, et, combines public information releases which effect prices with random deviations in the
bid-ask spread. The trade indicator model relates return to order flow and the residual component
of the bid-ask spread. The residual accounts for the private information and temporary buy-sell
imbalance factors, (1− α∗ − β), and is attributed to price clustering.

Trading volume and order flow have both been closely associated with informed trader activity in the
market microstructure literature. Using theory that explains regular intraday trading patterns to
transform trading volume and order flow into proxies for private information McGroarty, ap Gwilym,
and Thomas (2009) examined the relationship between bid-ask spreads and return volatility. Private
information is a common theme of intraday trading data patterns. These trading patterns are
identified in volume, volatility and bid-ask spreads. To explain such phenomenon McGroarty et al.
(2009) explored how private information influences price changes and bid-ask spreads. McGroarty
et al. (2009) introduced order flow as an additional variable determining intraday behaviour analysis.

Intraday trading data exhibit M and U shaped patterns in bid-ask spread, trading volume, return
volatility and order flow during the opening, trading normally and closing day processes. McGroarty
et al. (2009) reviewed the role of private information to explain bid-ask spreads and exchange rate
volatility. McGroarty et al. (2009) noted that the volatility contributes to incremental returns which
determine the overall price level.

The vast majority of intraday patterns of bid-ask spread are U shaped which show wide spreads at
the market opening and closing and moderate levels in between. Conversely trading volume and
return volatility are M shaped patterns with small volumes and low volatility at the market opening
and closing and moderate levels in between. However the literature on intraday empirical patterns
neglects intraday order flow. Evans and Lyons (2002) argue that order flow is driven by private
information and a driver of price in the spot FX market. An explanation of these intraday patterns
is attributed to either:

i. Differing trader behaviour at the opening and closing.

ii. The strategic behaviour of informed traders.

Admati and Pfleiderer (1988) noted that informed traders trade when uninformed traders are present
in the market to minimise their transactions costs: bid-ask spreads. This explanation is not sufficient
to treat volume as a proxy for private information. Any relationship between high volume and
bid-ask spreads or return volatility may just as easily be caused by high, uninformed trading volume
as by informed trading volume. Easley and O’Hara (1992) suggested a link between trading volume
and private information. Private informal signals cause trading volume to deviate from its normal
levels. This deviation splits the trading volume into unexpected components attributed to private
information and expected components which are not.

17



CHAPTER 2. THE FOREIGN EXCHANGE MARKET F. Josephidou

2.2.2 Theoretical Models of the Foreign Exchange Rate

Having looked at the structure of the foreign exchange market and described the various participant
groups, now consider how closely the traditional asset-price and microstructural exchange rate
models reflect this configuration.

Traditional Asset-Price Models

R. A. Meese and Rose (1991) examined the empirical relation between nominal exchange rates and
macroeconomic fundamentals in assessing the non-linearities: where changes in the output do not
change in direct proportion to changes in any of the inputs. Schinasi and Swamy (1989) suggested
that taking account of non-linearities may lead to improved forecasting ability of exchange rate
models.

In assessing the non-linearities, five theoretical models of exchange rate determination are considered.
The first three are variants of the monetary models of Dornbusch (1976), Frenkel (1976) and Mussa
(1977). The models consist of domestic and foreign currency demand equations with a stationary
disturbance: an equation relating the expected change in the spot rate to the interest rate differential
and an exogenously-varying risk premium on domestic assets. The first of the five models: the
flexible-price monetary model, assumes Purchasing Power Parity (PPP) holds up to an exogenous real
exchange rate shock and represented by

S = f(m, ip, ir) + εt where εt ∼iid N(0, σ2) , (2.7)

where S is the spot exchange rate; m is the ratio of domestic to foreign nominal money supply
and ip is relative industrial production and ir is the nominal interest differential. The next two
are sticky-price monetary models: prices cannot be changed easily even if there are changes in
other sectors of the economy. One version does not contain cumulated domestic and foreign trade
balances, while the other does. Both sticky-price variants assume slow adjustment of goods prices
relative to asset prices, and thus allow deviations from PPP. The sticky-price models are represented
by

S = f(m, ip, ir, p, tb) + εt where εt ∼iid N(0, σ2) , (2.8)

where p is the inflation differential and tb the relative cumulated trade balances. Note that the
inflation differential, p and trade balances, tb, do not enter Equation (2.7) the flexible-price monetary
model.

The first sticky-price monetary model imposes a constraint on trade balances, tb, and assumes that
the real interest differential: the nominal interest rate minus the expected rate of inflation, ir − p,
is an appropriate explanatory variable.

The second sticky-price monetary model also employs the real interest differential, but has no
restriction on the trade balance term.
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The second group of exchange rate models considered is based on explicit maximising behaviour.

The first is an adaptation of the highly-stylised Lucas (1982) model of a two-good, two-country,
pure-exchange economy. A representative agent who consumes both foreign and domestic output
maximises the expected discounted utility of current and future consumption subject to budget
and cash-in-advance constraints. The solution for the spot exchange rate is the product of relative
monies, incomes and the marginal rate of substitution between domestic and foreign goods. Taking a
Cobb-Douglas utility: a workable form of the production function used to represent the technological
relationship between the amounts of two or more inputs and the amount of output that can
be produced by those inputs, the model is parameterised. This in turn implies that the spot
exchange rate can be simply related to relative money supplies and domestic outputs. This model
is represented by

S = f(m, ip) + εt where εt ∼iid N(0, σ2) . (2.9)

The fifth model is the Hodrick (1988) extension of the Svensson (1985) price stability exchange
rate. The basic framework is that of Lucas (1982) with a modification of the timing of goods and
money market transactions. The Hodrick (1988) contribution is to add exogenous fiscal policy and
examine the effect of time-varying conditional variances of the exogenous processes on the level of
the spot rate. This model is represented by

S = f(m, ip, δm, h(m), h(ip)), h(δm) + εt where εt ∼iid N(0, σ2) , (2.10)

where δm is the change in relative money growth rates and h(−) is the conditional variance of the
variable in parentheses.

In assessing the importance of non-linearities in empirical models of exchange rates R. A. Meese
and Rose (1991) resolved that the poor explanatory power could not be attributed to non-linearities
arising from an improper functional form. That is the performance could not be attributed to the
misspecification of utility, production or the demand for money functions in standard linear models.
Thus incorporating non-linearities into existing structural model does not improve our ability to
understand how exchange rates are determined.

Sager and Taylor (2006) present a general representation of the asset-price models of exchange rate
determination and takes the form

St = β′ Ft + Set+1 , (2.11)

where St is the spot exchange rate at time t, Set+1 is the one period ahead expected spot rate given
information available at time t, Ft is the vector of macroeconomic fundamental variables that exhibit
explanatory powers for the determination of exchange rates and β′ is the vector of factor loadings:
the degree to which a factor acts upon a variable in the process. The range of loadings is between
-1 to 1. Loadings which are closer to 1 or -1 show that the factor has a strong effect on the variable
whereas, the loadings which are closer to zero show that the factor weakly effects the variable. This
approach is sufficiently general to encompass simple monetary models, sticky-price overshooting
models and portfolio balance models.
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Under the assumption of rational expectations, decisions based on human rationality, past experience
and new information made available by the changes in the macroeconomic fundamentals are instantly
incorporated into the exchange rates as soon as they are released. Thus Set+1 represents the true
conditional mathematical expectation of the one period ahead spot rate. This implies homogeneous
expectations of the market participants whereas it is their heterogeneity that causes participants
to trade. This model is independent of the factors identified by Huang and Masulis (1999) that
determine the bid-ask spread, namely the way information is processed or the institutional structure
of the market.

Asset-price models are equilibrium models distinct from the method used to reach that equilibrium
state. The models tell us nothing about how information on macroeconomic fundamentals gets
compounded into the current exchange rate and ignores institutional structure. What is accepted
is that macroeconomic fundamental variables: inflation, output, interest rates, etc. are measured at
a low frequency; monthly or quarterly and are often subject to error and revisions. This is possibly
the reason why asset-price models have performed poorly in explaining short-run exchange rate
movements.

The Evans-Lyons Microstructural Model

Lyons (2001) and Evans and Lyons (2002) noted a microstructural approach to exchange rate
determination is not necessarily at odds with asset-price models. While traditional asset-price
exchange rate models may tell us something about equilibrium conditions or fair value, they
ignore aspects evident in microstructure. Traditional models tell us nothing about the information
transmission mechanism and institutional structure.

In assessing the relationship between the information transmission mechanism and the institutional
structure consider the market structure as comprising three stages during the trading day:

i. Stage One: Having observed the return, Rt, at the start of each day, dealers independently
and simultaneously set bid-ask spreads for, and trade with, customers. Customers throughout
this process are non-reporting dealers and include banks: other than reporting dealers, and
institutional investors.

ii. Stage Two: Dealers trade amongst themselves, independently and simultaneously posting a
bid-ask spread for other traders. These spreads lead to trades, as dealers spread risk generated
by earlier customer trades through the interbank market. Once trading is complete dealers are
able to observe the order flow that has occurred. This is assumed to convey information about
customers trading in stage one.

iii. Stage Three: Dealers again trade with customers to share overnight risk more widely across the
market; supposing customers willingly absorb dealer’s inventory imbalances. Dealers do not
run overnight open positions.

Hence the closing exchange rate, CPt, at the end of each day within the Evans and Lyons (2002)
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model will be

CPt =
T∑
t=1

Rt +
T∑
t=1

oft , (2.12)

where Rt is the dealers periodic return attributed to the flow of macroeconomic information, and
oft is order flow. The change in the closing exchange rates, ∆CPt, from the end of day t− 1 to the
end of day t can be written as

∆CPt = ∆Rt + ∆Toft , (2.13)

where Toft is the total order flow generated by interdealer trading during the day. A distinction in
the model exists between active and passive customers. Stage one customers are active: implementing
appropriate strategies they generate initial imbalances in dealers’ positions. While stage three
customers are passive: inheriting foreign exchange exposure by passively absorbing dealers’ positions
at the end of the day.

Although the Evans and Lyons (2002) suggested dealer-customer relationship is useful, the notion
that customers willingly absorb the daily inventory imbalance of dealers seems at odds with market
practice. As the width of bid-ask spreads is a positive function of transaction size, dealers divide
customer trades into smaller tranches as they spread risk through the interbank market, thus saving
transactions costs.

2.2.3 Arbitrage Equilibrium for the Triangulation Transmission Mechanism

The market microstructure allows us to explain the short-run exchange rate movement in terms of
order flows and bid-ask spreads. Evans (2002) noted that order flows employ public information
regarding the expectations of the participants, the transaction standings and the macroeconomic
fundamentals, whereas the bid-ask spread communicates the volume and volatility of the market.
In reviewing the microstructure behaviour of the FX market it is noted that:

i. The information effect of order flow increase prices.

ii. Liquidity theory inferring that the bid-ask spread is increased by a rise of transaction costs or
a reduction in order flows.

iii. Adversary theory suggesting that volatility causes spread risk to increase.

Now consider the significance of arbitrage equilibrium in the FX market. What is the effect of the
interaction between FX exchange rates caused by currency cross rates and currency cycle triangular
arbitrage transactions in the FX market? How, if at all, is this linked to order flow and the bid-ask
spread?

Choi (2011) attempted to explain exchange rate dynamics by focusing on the arbitrage and the
spread in triangular foreign exchange trades. Choi (2011) noted that there is only one possible
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triangle when a bilateral exchange rate equals its trilateral rate, otherwise any third currency
would potentially create arbitrage opportunities. To explain exchange rate movements Choi (2011)
assumed the existence of three levels of time dependent determinants:

i. Exchange rates are identified by the macroeconomic fundamental drivers at the long-term
equilibrium.

ii. Short term exchange rates exhibit prices which deviate from macroeconomic fundamentals.

iii. The existence of very short-run, momentary, exchange rates before the markets function efficiently
to cancel them out.

The market drives the bilateral and trilateral exchange rates to equal each other by arbitrage. Moosa
(2001) argues that triangular arbitrage maintains the market equilibrium condition at which point
the rates are consistent and there is no profitable arbitrage opportunities. Moosa (2001) found the
effect of triangular arbitrage in the forward market is equivalent to the combined effect of covered
interest arbitrage and triangular arbitrage in the spot market.

The equilibrium state is accepting that the cross rate of a currency with other currencies, and those
currencies with each other are equalised through triangular arbitrage. The triangular arbitrage is
a financial activity that takes advantage of three exchange rates. Osu (2010) noted that arbitrage
is not a perfect equaliser because the market is not perfectly efficient. Aiba, Hatano, Takayasu,
Marumo, and Shimizu (2002) noted that arbitrage opportunities existed and generate an interaction
among foreign exchange rates. These interactions result in the auto-correlation function of foreign
exchange rates being negative in a short time scale. When examining the triangular activity of
three exchange rates, Aiba et al. (2002) noted that the product of the three foreign exchange rates
converges to its average. Given exchange rates AB, AC and CB, see Table 3.1 on page 28, a trader
exchanges one unit of currency A for an amount of currency B and that amount of B for an amount
of currency C and finally back to currency A, the final amount of A realised is given by

υ ≡
3∏
i=1

Si(t) = AB · 1

AB
· 1

AC
≈ 1 , (2.14)

where υ is the rate product and Si(t) is the exchange rate for currency i at time t. To be precise,
there are two types of the rate product. One in the direction outlined above. The other is based on
the transaction in the opposite direction. The two values show similar behaviour. This paper will
focus on the first type. If υ, the rate product, is greater than unity a profitable triangular arbitrage
opportunity exists. Hence many traders will immediately complete this transaction, moving the
rate product υ below unity and eliminating the arbitrage. Arbitrage opportunities arise because
the exchange rate Si(t) fluctuates strongly. Aiba, Hatano, Takayasu, Marumo, and Shimizu (2003)
define the logarithm rate product ln υ as ν′ given by

ν ′(t) = ln
3∏
i=1

Si(t) =
3∑
i=1

lnSi(t) . (2.15)

There is a triangular arbitrage opportunity whenever this value is positive.
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To study the effects of triangular arbitrage on the fluctuations of the exchange rates, Aiba et al.
(2003) constructed a stochastic model of the time evolution of exchange rates. The model’s
interaction accounts for the effect of the triangular arbitrage transactions. The basic equation
is the time evolution of the logarithm of each rate, given by

lnSi(t+ T ) = lnSi(t) + fi(t) + g(ν ′(t)) (i = 1, 2, 3) , (2.16)

where T is a time step which controls the time scale of the model, fi denotes independent fluctuations
that obeys a truncated Levy distribution: a continuous probability distribution for a non-negative
random variable and g represents an interaction function denoted by

g(ν ′(t)) = −a(ν ′ − ν̄ ′) , (2.17)

where a is a positive constant which specifies the interaction strength and ν′ is the time-evolution of
the logarithm rate product, where ν̄′ is the time average of ν′. The time-evolution of the logarithm
rate product is given by

ν ′(t+ T )− ν̄ ′ = (1− 3a)(ν ′(t)− ν̄ ′) + F (t) , (2.18)

where

F (t) ≡
3∑
i=1

fi(t) . (2.19)

The model successfully described the fluctuation of the data of the real market. Aiba et al. (2003)
noted that the rate product, υ, fluctuates close to unity. Plotting the probability density function of
the rate product, Aiba et al. (2003) illustrated that the function had a sharp peak and fat-tails while
the probability density function of the three constituent exchange rates, Si(t), did not. Aiba et al.
(2003) noted that this model describes a fat-tailed probability distribution of the actual market.

The triangular arbitrage transaction is a financial activity that takes advantage of the fluctuations
in three foreign exchange rates among three currencies: the product of the three foreign exchange
rates converge to the rate product, thereby generating an interaction among the rates. Aiba and
Hatano (2006) highlight another consequence of the triangular arbitrage interaction: a correlation
among exchange rates that makes the rate product converge to its average. The positive constant
a is related to the auto-correlation function of ν′ as

(1− 3a) =
Av(ν ′(t+ T ) · ν ′(t))−Av(ν ′(t))2

Av(ν ′(t)2)−Av(ν ′(t))2
. (2.20)

Aiba et al. (2003) noted that as a result of the disequilibrium of triangular arbitrage in a short
time scale: before participants enter the market restoring equilibrium, the auto-correlation of each
exchange rate in that short time scale is negative. Aiba and Hatano (2006) refers to this as a
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macroscopic model of triangular arbitrage and regard it as a one-dimensional random walk of three
exchange rates, lnSi, with a restoring equilibrium. Given the logarithm rate product ν′ is the sum
of lnSi, Aiba and Hatano (2006) regard ν′ to be the average equilibrium value the variables converge
to, driven by the interaction function g(ν′).

Describing the microscopic interactions among foreign exchange markets Aiba and Hatano (2006)
introduced a new model focusing on the dynamics of each dealer in the market based on the Sato and
Takayasu (1998) dealer model. Although the focus is on the interactions among three currencies,
two of the three markets can be regarded as one effective market for the purpose of the microscopic
model. The basic assumption of the Sato and Takayasu (1998) model is that dealers want to buy
currencies at a lower price and to sell currencies at a higher price. There are N dealers; the ith dealer
bidding to buy at Bi(t) and sell at B̄i(t). Making the simplifying assumption that the difference
between the buying and selling price is a constant: Λp ≡ B̄i(t) − Bi(t) > 0 for all i. The model
assumes that a trade takes place between the dealer who proposes the maximum buying price and
the one who proposes the minimum selling price. Transactions occur when

Max{Bi(t)} ≥Min{B̄i(t)} or Max{Bi(t)} −Min{B̄i(t)} ≥ Λp , (2.21)

where the logarithm of market spot rates correspond to Max{Bi(t)} and Min{B̄i(t)} denoting the
maximum and minimum values in the dealers buying threshold {Bi(t)}. The foreign exchange spot
rate, Si(t) is defined by the mean of Max{Bi} and Min{B̄i} when the trade takes place. Dealers
change their prices by the following deterministic rule

Bi(t+ 1) = Bi(t) + a′i(t) + c′∆Si(t) , (2.22)

where a′i(t) denotes the ith dealers price movement at time t: positive when the ith dealer is a buyer
and is negative when the dealer is a seller. Once the transaction takes place, the buying dealer
changes the sign of a′i(t) from positive to negative and the selling dealer changes it from negative
to positive. ∆Si(t) is the change in the exchange rate at time t, Bi(t) is the rate abounding at the
previous trade and c′ > 0 is a constant specifying the dealer’s response to changes in the exchange
rate, common to all dealers in the market. Thus the Sato and Takayasu (1998) model specifies four
parameters:

i. The number of dealers, N .

ii. The spread between the buying price and the selling price, Λp.

iii. The dealers response to the market change, c′.

iv. Dealers characteristic movements in a unit time, a′i(t).

In order to reproduce the effects of triangular arbitrage, Aiba and Hatano (2006) applied the
Sato and Takayasu (1998) model twice. They combined two of the three markets as one effective
market. Aiba and Hatano (2006) found both the macroscopic and microscopic models reproduced
the interaction among the markets. The models successfully demonstrated the actual behaviour
of the logarithm rate product ν′. However the microscopic model described more detail than the
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macroscopic model: the skewness of the distribution of the logarithm rate product ν′. The arbitrage
equilibrium state clearly describes the dynamic functionality of the market. Does this functionality
lend itself to deriving a model of the FX market?

2.3 Conclusions

In defining the functionality of the high frequency FX market this thesis endorses, a priori, a
microstructure rather than a macroeconomic approach. The microstucture variables of order
flow, which conveys the net buying pressure, and the bid-ask spread, conveying the transaction
costs, form the elements of the information transmission mechanism that determines the FX spot
price. This chapter advocates, a priori, that triangulation, which transmits information about
the spot price, is also the method of conveying the order flow and bid-ask spread information
to market practitioners. Although each of these elements conveys information unique to their
own function, this thesis posits that the elements also combine with triangulation to form the
systemic attributes of the pricing information flows. The thesis concludes that although each of
these attributes fulfils a unique role, it is clear that in order to model the FX market behaviour these
attributes need to be considered as operating as a system. The thesis postulates that the FX market
behaves as a system of attributes conveying the market information to practitioners. Therefore the
information transmission mechanism, consisting of order flow, bid-ask spread and triangulation, is
the determining factor in deriving the FX spot price.

As the market drives bilateral and trilateral exchange rates to equal each other by exploiting an
arbitrage opportunity, the information flow effecting the arbitrage opportunity is determined by
the interdependency between order flow, bid-ask spread and triangulation. Whereas order flow and
triangulation are clearly defined, this thesis has focused on the constituent elements that make up
the microstructure variable bid-ask spread, which requires greater examination. The explanatory
factors that make up the bid-ask spread are introduced within the Lyons (2001) framework and
shown to be important characteristics to understand the composition of the spread. Thus the
elements that make-up the bid-ask spread, i.e. price discreteness and price clustering, are examined
in the following chapter. This thesis proposes that in modelling the FX market, these attributes
and how they function as a system warrants further scrutiny.
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Chapter 3

Triangulation Discreteness Clustering

The microstructure variable described as an information transmission mechanism for order flow,
apprises the wider market about the private information and strategies of informed traders: Evans
and Lyons (2002) and Sager and Taylor (2006). Rather than simply regarding order flow as the
transmission mechanism, this is more nuanced and also incorporates the information being conveyed.
Inherent in the net buying pressure is information about trading positions, customer interactions
and price.

Dealers seek to use any embedded information which affords a trading advantage that could be
used profitably in the markets. Information flow is an essential attribute of the market. Order flow,
bid-ask spread and triangulation are the three elements of information flow. There is a suggestion
that they are closely linked and combine to describe the FX market behaviour. Individually they
contain information regarding their own sphere:

i. Triangulation communicates exchange rate information: the bilateral rate must equal the
trilateral rate in equilibrium, Aiba et al. (2002) and Choi (2011).

ii. Order flow communicates the transaction standing and the macroeconomic fundamentals.

iii. The bid-ask spread communicates volume and volatility of the market, Evans (2002).

Collectively triangulation communicates:

i. A price shock to one exchange rate to the two other pairs: McGroarty et al. (2009).

ii. The combined direct and indirect spread differentials: McGroarty, ap Gwilym, and Thomas
(2006).

iii. The order flow in one currency pair to explain the rate in another pair: Danielsson, Luo, and
Payne (2012).

A suggested area of further research is to look at the three elements of information flow and how
they operate as a system.
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This chapter considers what information is contained in the bid-ask spread and how this and the
order flow information is revealed by triangulation in describing the market. The focus of this
chapter is on the attributes of a key variable in the microstructure approach to modelling the FX

market: the distinguishing qualities of price discreteness and price clustering. The objective is
to quantify the significance and scale of these features and determine how they are interpreted
and communicated in the market. The features of the bid-ask spread reveal how the elements of
information flow describe the FX market.

3.1 The Composition of the Bid-Ask Spread

The delineation of price discreteness and price clustering are important to understand the behaviour
of bid-ask spreads in the spot FX market. McGroarty et al. (2007) looked at price clustering to
understand the composition of the bid-ask spreads and how they relate to the spot FX market. In
this market the bid-ask spread arises as the difference between the best limit order bid price and
the best limit order ask price that are ready to trade. Redefining the technical elements of the
decomposition model, see Equation (2.6) on page 17, McGroarty et al. (2007) identified three key
components of the bid-ask spread:

i. Private information: informed traders move the price and it does not return to its pre-traded
level.

ii. Transaction volume: temporary imbalances in the buying and selling volumes are quickly
restored.

iii. Residual bid-ask spread: after addressing points i and ii, this was previously allocated to order
processing and administration costs but a more appropriate interpretation of the residual factor
is price clustering.

Price clustering refers to the fact that not all the available digits are used equitably. Goodhart
and Curcio (1991) noted that rates ending in 0 or 5 tend to be used more frequently. In the FX

market exchange rates are truncated to a fixed number of digits, referred to as price discreteness.
For clarity the terms prices and exchange rates are inter-changeable throughout this work. Prices
are not infinitely long, rather specified to five digit accuracy. How are the microstructure bid-ask
spread elements that relate to price: discreteness and clustering, correlated to the exchange rate?
To what extent are discreteness and clustering present in the FX market and what is their effect on
bid-ask spreads?

The remainder of this chapter is organised as follows. Section 3.2 discusses the information flow due
to triangulation and the importance of price discreteness and price clustering to the bid-ask spread.
Section 3.3 discusses the data set and empirical methodology. Section 3.4 presents the results and
3.5 the conclusions.
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3.2 Triangulation, Price Discreteness and Clustering

Triangulation

In the electronic intraday spot FX market, bid-ask spreads are different from ones suggested by
market maker centric models proposed by theory. McGroarty et al. (2006) noted that the absence
of market makers will cause a temporary price disturbance due to an imbalance between buyers and
sellers. This imbalance contributes to higher volatility at higher-frequencies. Traders submitting
aggressive limit orders cause the bid-ask spreads to narrow, inducing transactions to oscillate
between the bid and ask quote, contributing to return volatility. Hence there should be a positive,
but weak, correlation between bid-ask spreads and return volatility.

There is a feature of the interdealer spot FX market that is important in determining the bid-ask
spread and volatility. The cross exchange rate arbitrage. McGroarty et al. (2009) refer to this
as a vehicle currency transaction: agents engage in currency trades indirectly using the US dollar
instead of direct bilateral trade among their own currencies. Choi (2011) examined the exchange
rate dynamics in terms of arbitrage and the bid-ask spread in triangular FX trades. Choi (2011)
noted there is only one possible triangle that can exist when bilateral exchange rates equal the
trilateral rates; otherwise a third currency would create an arbitrage opportunity. Any bilateral
deviations from a common currency side of the trilateral rates will be eliminated in an efficient
market, restoring equilibrium. To explain these features consider as an example an exchange rate
system with three currencies: A, B and C. These give rise to three exchange rates: AB, AC and
CB, see Table 3.1.

TABLE 3.1: Example Currency Pairs Bid and Ask Quote

Currency Pair Bid Ask

AB 1.1745 1.1745
AC 0.8782 0.8783
CB 1.3373 1.3374

Source: City Index, December 2018.

A buy trade involves buying the foreign base and selling the domestic quote moving from quote to
base currency, therefore dividing the nominal by the ask spot rate. Conversely a sell trade requires
selling the foreign base and buying the domestic quote, moving from base to quote currency, hence
multiplying the nominal by the bid spot rate. A trader with one unit of A to invest can attempt
the following arbitrage process A→ C → B → A:

1. Invest A1 into C by selling at the AC bid rate: A1 · 0.8782 = C0.8782

2. Invest C0.8782 into B by selling at the CB bid rate: C0.8782 · 1.3373 = B1.1744

3. Invest B1.1744 into A by buying at the AB ask rate:
B1.1744

1.1745
= A0.9999 ≈ A1

Alternatively the same trader can attempt the arbitrage process A→ B → C → A:
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1. Invest A1 into B by selling at the AB bid rate: A1 · 1.1745 = B1.1745

2. Invest B1.1745 into C by buying at the CB ask rate:
B1.1745

1.3374
= C0.8782

3. Invest C0.8782 into A by buying at the AC ask rate:
C0.8782

0.8783
= A0.9999 ≈ A1

At equilibrium no arbitrage opportunities exist: the trader started with A1 units and the investment
returned A1 units. What is the impact of triangulation on bid-ask spreads and order flow?

Suppose an exogenous shock caused the AC currency pair to rise by 10%. If there is no change
of the like in the other two rates, a riskless arbitrage opportunity arises. To restore equilibrium,
thereby extinguishing the riskless profit opportunity, the exogenous shock affecting one exchange
rate must be transferred to other exchange rates.

In addition to the information flow due to price, the triangulated relationship communicates the
effect due to an imbalance in the bid-ask spreads.

If the combined indirect spread, for example AB & CB, is lower than the direct AC spread, the
volume will move away from the direct currency pair AC to the indirect combination, AB & CB,
adversely impacting the direct pair and re-establishing the triangulated process to restore the bid-ask
spread equilibrium.

When considering the triangular arbitrage cross-market effect of order flow, Danielsson et al. (2012)
noted that the order flow in one currency pair could be used to explain the exchange rate of a
second currency pair. When presented with triangular currency pairs an informed trader can use
any currency pair to exploit the information advantage. Order flow in one pair might drive price
changes in other pairings. Traders in other markets observe the order flow just transacted and revise
their valuations accordingly. Danielsson et al. (2012) stated that there was clear evidence of order
flow information being transmitted across linked, triangulated exchange rate markets. Triangulation
communicates information on the impact of bid-ask spreads and a mechanism to dissipate order
flow information ensuring the equilibrium pricing is restored.

Triangulation is the method by which the information flow concerning price, bid-ask spread and
order flow is dispersed through the FX market.

Discreteness

Prices move in discrete units, the exact size of which is either determined by regulators, the exchange
or simply market convention. Discreteness induces negative serial correlation in high frequency data:
Harris (1990). This occurs because discreteness causes the high frequency data to overstate volatility.
Price discreteness impacts the bid-ask spread due to the minimum tick or pip size which establishes
the lower bound on the spread, and the size of the increment by which it can be increased. In its
own right price discreteness is important in shaping bid-ask spreads and price volatility. However
McGroarty et al. (2007) highlighted the fact that the bid-ask spreads are not uniform across the
whole of the electronic interdealer spot FX market. If certain prices are used more often than others:
price clustering, the effect due to price discreteness will be compounded.
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Clustering

Transactions between FX banks and their customers are bilateral and are not visible to other banks.
Informed traders take an inventory from their customers, giving rise to inventory imbalances. Banks
off-load that inventory near the mid-market rates. These transactions set the mid-price that banks
use when quoting the bid-ask spread spot prices to their customers. Price clustering: the distribution
of trading volumes across the final digit of trade prices, is an independent factor of the bid-ask
spread. In essence price clustering exerts its influence on the bid-ask spreads and volatility.

Why does clustering arise?

Grossman, Miller, Cone, Fischel, and Ross (1997) noted that the lesser degree of clustering on NYSE

is the normal result of competition, and the higher degree of clustering on the NASDAQ is anomalous,
indicative of a collusive marketplace. The most contentious point was raised by W. G. Christie and
Schultz (1994) who suggested that market makers colluded to maintain wider bid-ask spreads by
avoiding the odd-eighth digit quotes. W. G. Christie and Schultz (1994) claimed that the multiple
dealer market is designed to produce narrow bid-ask spreads through the competition of order
flow. They found that odd-eighth quotes were virtually non-existent for 70 out of 100 actively
traded NASDAQ securities, implying that spreads are actually twice as wide and maintained by
tacit collusion.

The collusion hypothesis as an explanation for clustering is still open for debate. Other plausible
reasons include Yule et al. (1927), simply arising systematically from rounding ’human error’ when
ask to read a numbered scale.

Goodhart and Curcio (1991) put forward a comparison of the price attraction and the Ball, Torous,
and Tschoegl (1985) price resolution hypotheses as possible explanations. The attraction hypothesis
focuses on the rounding behaviour of ’human error’ identified above. The resolution hypothesis
contends with clustering as a natural occurrence in the market. Clustering is the consequence of
the compromise between increased price accuracy and the inconvenience of ever longer prices.

Another explanation is the negotiation hypothesis suggested by Harris (1991) and Brown, Laux,
and Schachter (1991). The idea of a two-tier pricing system whereby large trades result in harder
bargaining and more finely tuned prices, while small trades attract rudimentary pricing from a
reduced selection of prices. Grossman et al. (1997) identified a variety of factors that potentially
contribute to clustering: such as market structure or whether the quotes are binding or not, and
found they do not contradict the final-digit price clustering pattern associated with price resolution,
rather they attempt to explain why it occurs at all.

3.3 Data Set and Methodology

For the first time since 2001, global FX trading between two consecutive Bank for International
Settlements (BIS) surveys: 2013 and 2016, had declined, to recover in 2019. The BIS survey reported
that global FX turnover fell to $5.1 trillion per day in April 2016, from $5.4 trilling in April 2013 and
recovered to $6.6 trillion in April 2019. Spot trading increased to $1.99 trillion per day in April 2019,
from $1.65 trillion in 2016. See Table 3.2 for a breakdown of the percentage market share of the
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leading spot rates as per the BIS Surveys of 2016 and 2019.

TABLE 3.2: BIS Survey, April 2019: Market Share of Spot Transactions by Currency Pair

Exch. Rate April 2013 April 2016 April 2019

EUR/GBP 1.90% 2.00% 2.00%
EUR/USD 24.10% 23.10% 24.00%
GBP/USD 8.80% 9.30% 9.60%
USD/JPY 18.30% 17.80% 13.20%
EUR/JPY 2.80% 1.60% 1.70%
GBP/JPY 1.70% 0.90% 1.00%

Source: BIS Survey, April 2016 and 2019.

See Table 3.3 for the percentage share of average daily turnover for the top four currencies by
market share. Because there are two currencies involved in a currency pair, percentage share of
individual currencies total is out of 200% instead of 100%.

TABLE 3.3: Currency distribution of OTC FX average daily turnover

Currency April 2013 April 2016 April 2019

USD 87.00% 87.60% 88.30%
EUR 31.40% 31.40% 32.30%
JPY 23.00% 21.60% 16.80%
GBP 11.80% 12.80% 12.80%

Source: BIS Survey, April 2016 and 2019.

FX trading continued to be dominated by other financial institutions: including non-reporting
banks, institutional investors and hedge funds, accounting for 51% of turnover in April 2016 increasing
to 55% of turnover in April 2019. Reporting dealers: executing trades and managing risks on their
accounts and on behalf of their clients, accounting for 42% in April 2016 only accounted for 38% of
turnover in April 2019 and non-financial customers: FX transactions associated with global trade,
remained unchanged at 7% in April 2019. However, the share of trading between reporting dealers
has increased only once since 1995 in April 2016 to fall back again in April 2019. Interdealer trading,
which averaged $2.1 trillion in April 2016, accounting for 42% of turnover, increased in absolute terms
to $2.5 trillion but declined relative to the market share to 38% of FX turnover in April 2019. The rise
in interdealer trading was primarily driven by the increased trading in FX swaps, a 13% rise since
2013 and 2% rise since 2016 to $3.3 trillion in April 2019. Turnover in spot activity among reporting
dealers recovered in absolute terms to $1.99 trillion in April 2019 compared to $1.65 trillion in April

2016.

The Refinitiv Eikon trading system, formerly Thomson-Reuters, provided the data for this study.
The data set covers the three month period from September 12th, 2018, to December 12th, 2018. The
data consists of over ninety thousand observations for each of the top four currencies by percentage
share of average daily turnover as per the April 2019 BIS survey, see Table 3.3. The related currency
pairs consists of EUR/USD, EUR/GBP, GBP/USD, USD/JPY, EUR/JPY and GBP/JPY, see Table 3.2.
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The exchange rate price history comprises the best bid, mid and ask quotes and time-stamped to
the nearest second. No information as to the transaction size or trading parties is given.

The analysis looks at the impact on exchange rates due to bid-ask spreads and reveals the price
discreteness properties of each rate. The term pip is commonly used in the foreign exchange market
in place of the word tick. It may be worth acknowledging the distinction that pips arise as a matter
of convention, whereas ticks are formally enforced, usually by an exchange, in this paper the use of
the two terms is inter-changeable. A pip usually refers to the incremental value in the fifth non-zero
digit position from the left. Note that it is not related to the position of the decimal point. For
example, one pip in a USD/JPY value of 113.57 would be 0.01, while one pip for EUR/USD of 1.0434
would be 0.0001. The fact that the decimal place does not occupy a fixed position necessitates the
introduction of a scaling factor with the purpose of bringing the pip to the left of the decimal point.
For example, the scaling factor for the USD/JPY is 100 and that for the EUR/USD is 10,000.

The pip bid-ask spread is defined as

pip = (ask − bid) · Scaling Factor . (3.1)

The first part of the empirical analysis considers the price discreteness properties of each exchange
rate by computing the summary statistics of the pip bid-ask spread.

The next part looks at establishing the presence of price clustering by applying a diagnostic
chi-squared, χ2, goodness-of-fit test statistic to the observed set of final digits.

McGroarty et al. (2006) proposed the χ2 test for clustering. If clustering is absent then an equal
number of observations for each digit from 0 to 9 will give a χ2 value of zero. However there is
a limitation to the χ2 test which is very sensitive to sample size. With a large enough sample,
even trivial relationships can appear to be statistically significant. For χ2, larger samples may lead
to the decision of rejecting the null hypothesis, concluding the presence of clustering in error. In
interpreting the χ2 goodness-of-fit for the large sample size undertaken in this test, consider whether
the interpreted test statistic is meaningful. The χ2 statistic is

χ2 =
10∑
i=1

(
ni − 1

10

10∑
j=1

nj

)2

1
10

10∑
j=1

nj

, (3.2)

where ni(j) equals the number of observations at final digit i(j). The χ2 critical value at the 1%

significance level with 9 degrees of freedom is 21.666. The null hypothesis test is for no significant
difference between the observed and expected values: the absence of clustering. The χ2 statistic
only addresses the existence of price clustering, it does not determine its level.

The extent of clustering can be summarised numerically by measuring the range between the highest
and lowest quotation frequencies relative to the expected final digit distribution with no clustering.
To enable comparison between markets Grossman et al. (1997) proposed the Standardised Range
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(SR) test as a measure of the level of clustering. The SR formula is given as

SR = (Hi(φ′i)− Lo(φ′i))/Q , (3.3)

where φ′i is the percentage of final digit observations as a proportion of the total population and
(Hi(φ′i)−Lo(φ′i)) is the difference between the highest and lowest percentage frequency at digit i: the
maximum and minimum percentage distribution of last digit quote, and Q = 10%: the percentage
at each final digit i, if no clustering occurs. The absence of clustering leads to an SR value of zero
and a 100% concentration would give a value of ten.

The χ2 and SR tests address the existence and magnitude of price clustering but reveal nothing of
the cause. Goodhart and Curcio (1991) provide two ordered final digit groupings that correspond
to the two possible causes of clustering discussed previously:

i. If the attraction hypothesis is correct the final-digits should occur in descending order of
frequency with 0 & 5 the most frequent, followed by the pairs 7 & 3, 8 & 2, 4 & 6 and
the least frequent pair 1 & 9. The test statistic is

A =
Min((Av(n3,7)−Av(n2,8)), (Av(n2,8)−Av(n4,6)), (Av(n4,6)−Av(n1,9)))

Av(|n3 − n7|, |n2 − n8|, |n4 − n6|, |n1 − n9|)
, (3.4)

where ni is the number of observations at the final digit i, nij is the set of numbers of observations
at the final digits i and j, Min is the minimum value of the set and Av is the mean value with ||
being the absolute value. The numerator is the minimum difference between the grouped average
set of observations. The denominator is the average absolute difference between the same grouped
observations.

ii. If the resolution hypothesis is correct the final-digits should occur in descending order of
frequency with 0 & 5 the most frequent, followed by two groups with 2 & 3 & 7 & 8 in
one group and 1 & 4 & 6 & 9 in the least frequent group. The test statistic is

R =
Av(n2,3,7,8)−Av(n1,4,6,9)

Max(Max(n2,3,7,8)−Min(n2,3,7,8),Max(n1,4,6,9)−Min(n1,4,6,9))
, (3.5)

where ni is the number of observations at the final digit i, ni,j,k,l is the set of numbers of observations
at the final digits i, j, k and l, Max and Min are the maximum and minimum value of the set
respectively and Av is the mean value. The numerator is the difference between average grouped
set of observations. The denominator is the maximum value of the difference between the maximum
and minimum value of each group set.

Equations (3.4) and (3.5) depend on 0 and 5 being the two most frequent end digits. If they are
not, then the pattern does not comply with the conventional forms being tested and the test value
is set to zero. Otherwise, the numerator of Equation (3.4) takes the average of the observations for
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each sequential pair and then detects the minimum difference between each of these averaged pairs.
The denominator calculates the average of the absolute difference within each ordered pair. The
smallest difference between the pairs is divided by the average difference within the pairs. Note
that the denominator will always be non-negative, so that a negative number on the numerator can
never be made positive by the denominator. For both tests a test statistic greater than one denotes
strong evidence in favour of the respective hypothesis. Positive values below one suggest the right
ordering but a weak fit, where the higher a positive number the better the fit and a non-positive
value rejects the hypothesis.

3.4 Results

The empirical results present price granularity as a proxy for price discreetness, Goodhart, Love,
Payne, and Rime (2002). Table 3.4 presents the summary statistics for the pip spot FX data to
evaluate price discreteness as a source of wider bid-ask spreads.

TABLE 3.4: Currency Pairs - Pip Spread Statistics

EUR/GBP EUR/USD GBP/USD USD/JPY EUR/JPY GBP/JPY

Mean 3.462 2.731 3.179 2.261 3.701 3.785
Median 4.000 3.000 4.000 2.000 4.000 5.000
Maximum 16.000 11.000 23.000 8.000 8.000 12.000
Minimum 1.000 1.000 1.000 0.900 1.000 1.000
Std. Dev. 1.507 1.365 1.554 1.054 1.386 1.661
Skewness −0.371 0.166 −0.131 0.223 −0.977 −0.589
Kurtosis 2.556 2.054 2.323 2.299 2.813 2.035

Jarque-Bera 2945.287 4004.775 2125.109 2767.601 15 287.220 9169.680
p-value 0.000 0.000 0.000 0.000 0.000 0.000

Sum 327 917.000 261 570.000 307 840.000 217 833.700 352 255.000 359 034.000
Sum Sq. Dev. 214 985.100 178 387.700 233 705.600 106 969.600 182 936.800 261 703.100

Observations 94,709 95,763 96,838 96,333 95,171 94,850

Eviews 9

The first part of the analysis in Table 3.4 reveals the price discreteness properties of the pip bid-ask
spread. The low standard deviation shows that the spreads are grouped close together around the
mean. The mean and median are not vastly different, indicating the absence of excess outliers. Note
that the mean is less than the median for all currency pairs except USD/JPY, implying the data is
negatively skewed to the left: long left tails containing more spreads below the mean than above the
mean. Conversely the USD/JPY currency pair is positively skewed: long right tails with more data
above the mean than below it. This is in line with the skewness figures obtained. With kurtosis of
less than 3 the distributions are platykurtic producing fewer and less extreme outliers than would
be expected with a normal distribution. The large Jarque-Bera statistic rejects the null hypothesis
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of normality concluding the pip bid-ask spread is not normally distributed across all the exchange
rates considered.

Goodhart et al. (2002) considered whether the market practice relating to pip quoting could have
been changed to add a decimal place and so facilitate a reduction in bid-ask spreads: traders
could use six rather than five significant digits. They concluded that this could have introduced
complications as other researchers found that trade size and market depth fell when smaller pip
sizes were imposed. The result support the view that price discreteness sets the parameters for the
spreads, the majority of spread data being closely grouped and less than the mean with very few
outliers, but does not indicate that increasing the pip to six significant digits from five would alter the
distribution of the spread once the scaling factor has been applied to compensate for the additional
digit. Adding an additional digit only increases the scaling factor not the distribution. Although
there is no central regulatory body, the interdealer spot FX market seems to have accounted for price
discreteness in the exchange rates by fully utilising the final digit pip quotes. Price discreteness is
factored into the FX pricing structure and market mechanism.

In considering if price clustering behaviour may explain the action of bid-ask spreads the final digit
distribution is applied to all currency pairs and the W. G. Christie and Schultz (1994) collusion
hypothesis is tested by examining the odd versus even quote distribution. The currencies analysed
in this study consist of five significant digits throughout, as is the convention in the spot FX market,
and all the rates use the full final digit range of 0 to 9. Tables 3.5 and 3.6 present summary statistics
relating to price clustering within the quoted price data from submitted limit orders.

TABLE 3.5: Currency Pairs - Percentage Distribution of Spot FX Quotes at Final Digit

Distribution of Last Digit Quote

Exch. Rate 0 1 2 3 4 5 6 7 8 9

EUR/GBP 10.30% 9.75% 9.88% 9.50% 9.63% 9.97% 9.88% 10.13% 10.22% 10.75%
EUR/USD 9.48% 9.06% 9.87% 10.31% 10.58% 10.67% 10.25% 10.26% 10.07% 9.45%
GBP/USD 10.00% 9.77% 10.02% 9.88% 10.05% 9.94% 9.94% 10.08% 10.29% 10.03%
USD/JPY 10.40% 9.47% 9.89% 10.02% 9.69% 9.78% 9.79% 10.25% 10.20% 10.50%
EUR/JPY 9.95% 9.97% 9.57% 9.88% 10.06% 10.26% 10.27% 10.07% 10.02% 9.97%
GBP/JPY 10.04% 9.56% 9.82% 10.22% 9.91% 10.21% 10.22% 9.68% 10.34% 9.99%

TABLE 3.6: Currency Pairs - Odd and Even Digit Distribution

Exch. Rate Odd Digits Even Digits

EUR/GBP 50.1 % 49.9 %
EUR/USD 49.7 % 50.3 %
GBP/USD 49.7 % 50.3 %
USD/JPY 50.0 % 50.0 %
EUR/JPY 50.1 % 49.9 %
GBP/JPY 49.7 % 50.3 %
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Table 3.5 presents the percentage distribution of spot FX quotes at the corresponding final digit. By
inspection one can see that the final digits 0 and 5 are not significantly dominant over the remaining
final digits as suggested by Goodhart and Curcio (1991). However the distribution across the number
range is not an even 10%, suggesting clustering is potentially present. The null hypothesis of the
absence of clustering will be tested below, see Table 3.7. Table 3.6 presents the odd versus even
number usage among full price points in spot FX markets. The usage demonstrates that there is no
clear evidence that odd numbers are preferred to even, or vice versa, in the electronic interdealer
spot FX market for the currencies considered. This contrasts with the McGroarty et al. (2006) test
which showed persistent evidence that even numbers were weakly preferred to odd numbers.

TABLE 3.7: Currency Pairs: χ2 Test of Price Clustering

Exch. Rate No. of Obs. χ2-test p-value Null

EUR/GBP 94,709 113.707 0.0000 % Reject
EUR/USD 95,763 237.962 0.0000 % Reject
GBP/USD 96,838 16.741 5.2931 % Accept
USD/JPY 96,333 96.574 0.0000 % Reject
EUR/JPY 95,171 33.483 0.0110 % Reject
GBP/JPY 94,850 55.998 0.0000 % Reject

χ2 Test Statistic. Critical value at the 1% significance level with 9 degrees of freedom is 21.666.

If no clustering is present then the distribution across the range 0 to 9 of final digits in Table
3.5 should be 10% each. This is not the case and a χ2 test is undertaken, Equation (3.2), to
verify the null hypothesis of no significant difference between the observed and expected values in
the spread distribution: no clustering. Table 3.7 presents the χ2 test statistic for the presence of
price clustering in the spot FX market. The p-value represents the percentage probability that the
difference between observed and expected outcomes stem from sampling error. Therefore if p-value
is less than 0.01 (1% level of significance) the null hypothesis is rejected and conclude clustering is
present. The χ2 critical value at 9 degrees of freedom is 21.666, the test statistic is greater than
the critical value for all currency pairs with the exception of GBP/USD and thus reject the null and
conclude that clustering exists in all currencies tested except GBP/USD.

Whereas the χ2 test confirms the presence of clustering, Grossman et al. (1997) proposed the
Standardised Range (SR) test, Equation (3.3), as a measure of the level of clustering to enable
comparison between markets. The absence of clustering would lead to a value of zero, whereas
100% concentration would give an SR value of ten. see Table 3.8.
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TABLE 3.8: Currency Pairs - Standardised Range Test

Exch. Rate Standardised Range

EUR/GBP 0.1249
EUR/USD 0.1609
GBP/USD 0.0528
USD/JPY 0.1033
EUR/JPY 0.0701
GBP/JPY 0.0778

Standardised Range Test Statistic. No clustering returns a value of zero.
100% clustering returns a value of ten.

FIGURE 3.1: Currency Pairs - Standardised Range Graphs

(a) EUR/GBP Graph 1 (b) EUR/USD Graph 2 (c) GBP/USD Graph 3

(d) USD/JPY Graph 4 (e) EUR/JPY Graph 5 (f) GBP/JPY Graph 6

The Standardised Range measures in Table 3.8 and Figure 3.1 show low levels of price clustering
in spot FX rates. The Standardised Range test shows that the EUR/USD, the most traded currency
pair with 24.0% of the market, has the most clustering and GBP/USD, with only 9.6% of the market
the least. This corresponds to the χ2 test in Table 3.7 where GBP/USD was the only currency pair
that did not reject the null hypothesis of no clustering. The low degree of clustering for EUR/JPY,
with 1.7% of the market, is what is expected as the EUR/JPY exchange rate is less volatile than
the EUR/USD, EUR/GBP and USD/JPY exchange rates which collectively make up 39.2% of the FX

market.

Having confirmed the presence and magnitude of clustering in the FX market, now consider the
causes of price clustering behaviour that may explain the action of bid-ask spreads. The Goodhart
and Curcio (1991) price clustering pattern test is applied to all currency pairs and reveals the price
clustering patterns in quoted spot FX limit orders. The test proposed by Goodhart and Curcio
(1991) evaluates the attraction and resolution hypotheses as an explanation of the possible causes
of clustering.
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TABLE 3.9: Currency Pairs - Attractions & Resolution Price Clustering Pattern Test

Exch. Rate Attractiona Test Resolutionb Test

EUR/GBP −0.8870 Reject −0.0613 Reject
EUR/USD −1.8260 Reject 0.1931 WeakFit
GBP/USD 0.0000 Reject 0.0000 Reject
USD/JPY −0.5872 Reject 0.2219 WeakFit
EUR/JPY −1.7706 Reject −0.3700 Reject
GBP/JPY −0.2909 Reject 0.1386 WeakFit
a Attraction Clustering Pattern: Test statistic greater than one denotes strong evidence on favour of the premiss.

Positive values less than one suggested the right ordering but a weak fit. Non-positive values reject the premiss.
b Resolution Clustering Pattern: Test statistic greater than one denotes strong evidence on favour of the premiss.

Positive values less than one suggested the right ordering but a weak fit. Non-positive values reject the premiss.

The initial test is to verify whether 0 and 5 are the two most frequent final digits in Equations (3.4)
and (3.5). If they are not, then the pattern does not adhere to the conventional forms being tested
and the test value is set to zero. In testing the premiss a test statistic greater than one denotes strong
evidence in favour of the proposition. A positive number shows increasing levels of acceptance. The
higher the value, the better is the fit. Positive values below one suggest the right ordering but a
weak fit. Positive values below one identify series with the appropriate rank ordering but differences
within at least one of the groupings dominates the difference between the groups. Non-positive test
values reject the premiss, denoting that the sets do not exhibit the ordering required by the test.

Table 3.9 reveals the results of the attraction and resolution price clustering tests. The tests look
to explain the frequency of final digit usage in quotes for the FX spot price data. In terms of the
formal test for the cause of price clustering, the attraction and resolution price pattern tests for
GBP/USD, see Table 3.9, were rejected: digits 0 and 5 did not conform to the patterns being tested
and the test statistic values were set to zero, rejecting the premiss as an explanation for clustering
for this currency pair. This is consistent with the χ2 and SR tests above.

The detailed breakdown for the remaining currency pairs showed a slight favour of the final digits
0 and 5, enabling the attraction and resolution test for the cause of price clustering. Regarding the
attraction price pattern, see Attraction Table 3.9, the remaining currency pairs were all non-positive
and the proposal rejected. Concluding that the attraction hypothesis does not explain the clustering
patterns in the currency pairs considered.

For the resolution price pattern, see Resolution Table 3.9, currency pairs EUR/GBP and GBP/JPY

were non-positive and the proposal rejected. EUR/USD, USD/JPY and GBP/JPY, the three most
traded currency pairs, were slightly positive and weakly fit, accepting the premiss put forward by
Ball et al. (1985) that clustering in these markets is a natural occurrence in a market which has
reached the optimal degree of price resolution.

3.5 Conclusions

This chapter examined the microstructure approach to exchange rates: order flow and the bid-ask
spread, and the corresponding relationship with triangulated pricing in seeking to identify the
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determining factors that model the spot price in endeavouring to explain the function of the FX

markets.

The explanatory microstructure factors of the bid-ask spread i.e. price discreteness and price
clustering were appraised by gauging the changes in the spreads for six currency pairs that account
for 51.5% of the spot FX market by volume to identify the pricing characteristics of the market.
An additional test proposed by Goodhart and Curcio (1991) was applied to address the pattern of
clustering in an attempt to identify the potential causes.

Appraising the price discreteness found no indication that increasing the spot FX quotes from five to
six digits would decrease the spread. Rejecting the proposal of an additional digit to the spot price
quotes as a means of enhancing the transmission mechanism and concluding that the transfer of
market information is efficient, the extra digit would simply increase the required scaling factor and
not affect the distribution. The distribution of the price data was closely grouped around the mean
for almost all the currencies tested, with a small standard deviation implying that the quoted price
is in the region of the market average with only a small margin of error. Hence, price discreteness
has been efficiently assimilated into the trading mechanism.

The presence of price clustering was evaluated by applying the χ2 test statistic rejecting the null
hypothesis of no significant difference between the observed and expected values in the spread
distribution, concluding that clustering was present. There was obvious price clustering present in
the majority of the currencies in the spot FX markets examined. However, applying the Standardised
Range SR test to measure the level of clustering revealed that where clustering was present it was
not significant, returning very low values in the SR test.

The spread pattern was then appraised to ascertain the possible causes of clustering. The price
attraction hypothesis was overwhelmingly rejected as an explanation for price clustering behaviour
in the spot FX market and only weakly accepted the price resolution explanation. Both price
discreteness and price clustering, although present, are incorporated into an efficient market and
factored into the pricing processes that make up the information transmission mechanism.

Concluding that order flow is a mechanism for dissipating net buying pressure, the bid-ask spread
manifests the transaction costs and associated risks whereas triangulation is the vehicle used to
restore the market equilibrium for the microstructure attributes and price, the proposed approach
to model exchange rates as a system of attributes is credible. The model describes the efficient
information flow through the FX market that determines the spot price. These attributes are
essential to explain how an efficient market functions and are fundamental to defining the model
behaviour that can be used as the basis of an FX option pricing formula. The roles of order flow,
bid-ask spreads and triangulation are essential factors that must be taken into consideration, in
concert, when developing a theoretical stochastic model of the FX market.
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Chapter 4

Stochastic Stock Price Processes

This chapter considers the theoretical models underpinning the stochastic stock equations that
define the Black and Scholes (1973) and R. C. Merton (1973) (BSM) option pricing formula. When
viewing the stochastic stock processes in relation to foreign exchange a specific characteristic of
the transaction has to be taken into consideration: arbitrage. Equity transactions in one sector
may result in an investor having to reallocate some of their equity portfolio holdings, which could
have an indirect effect on the pricing of equity in other sectors. However the interactions between
exchange rates are stronger because of arbitrage. Bilateral foreign exchange rates, quoted in currency
pairs, are directly affected by the trilateral pricing movement of related triangular pairings due to
arbitrage. In this chapter the stochastic stock price process that predicates the assumption that
security prices follow a geometric Brownian motion (GBM) is examined in considering how the
process can be applied to foreign exchange. The purpose of this chapter is to emphasize the unique
differences of the stochastic stock equations with respect to foreign exchange and review the relevant
literature as the basis for extending the stock models to define the stochastic processes that describe
the foreign exchange market.

4.1 The Properties of Price Processes

The properties of the stochastic price processes relating to Brownian motion and geometric Brownian
motion are presented in Appendix B on page 152.

4.1.1 The Validity of the BSM Geometric Brownian Motion Assumption

Why choose geometric Brownian motion?

Geometric Brownian motion (GBM) is frequently invoked as the model for stock price returns. It
is widely accepted as a valid model for the growth in the prices of stocks over time and forms the
basis for the Black and Scholes (1973) option pricing model. It is important to verify that a time
series follows a GBM process before relying on the results for such an assumption.
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Any stochastic process containing a Wiener process is a normally distributed stochastic process
with mean 0, standard deviation

√
t and variance t.

Geometric Brownian motion replaces the generalised Wiener process constant drift rate a with the
expected rate of return µ and the noise multiplier b with the variability of the percentage return in
a short period of time, regardless of the stock price, thus the standard deviation is proportional to
the stock price σS, see Section B.1.3 on page 155. The model of stock price behaviour described by
geometric Brownian motion is therefore given as

dS

S
= µdt+ σ dz . (4.1)

From Itô’s lemma, the process followed by lnS when S follows the process in Equation (4.1) is given
as

lnST − lnS0 ∼ φ
[
(µ− σ2

2
)T, σ2T

]
, (4.2)

where ST is the stock price at a future time T and S0 is the stock price at time 0.

Black and Scholes (1973) concluded that stock price returns described by geometric Brownian
motion are normally distributed ∼ N

(
µdt, σ2t

)
with mean µdt and variance σ2t. If the logarithmic

return dS
S is normally distributed as ∼ N

[(
µ− σ2

2

)
t, σ2t

]
then the logarithmic prices lnST are

normally distributed with characteristic function ∼ φ
[
lnS0 +

(
µ− σ2

2

)
T, σ2T

]
as per the Black and

Scholes (1973) assumptions on page 194.

Although geometric Brownian motion proved a better fit to the distribution of actual stock price
changes than Brownian motion, Malone (2002) posits that geometric Brownian motion is not the
most accurate model that can be used for the evolution of stock price processes. Other diffusion
processes may be used to model price evolution, significantly sample paths may not be continuous
and jump processes may be considered in addressing any discrepancies.

4.1.2 Diffusions, Jump Processes and Mixed Jump Diffusion Processes

In presenting potential processes to replace geometric Brownian motion to model the evolution
of prices in time, alternative diffusions, jump processes and mixed jump diffusion processes are
considered. Given that the stochastic process literature is so large it is essential to be selective in
this review. Therefore this review covers models that are used for related applications in finance.

The Constant Elasticity of Variance Model

Cox and Ross (1976) suggested a class of variance, σ(S, t), that is referred to as the constant elasticity
of variance model. The differential equation for the stock price S becomes

dS = µS dt+ σS1−α dz , (4.3)

with σ(S, t) = σS1−α for some α where 0 ≤ α ≤ 1. Setting α = 0 gives geometric Brownian motion.
Two processes of note which are special cases of the constant elasticity of variance model are:
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i. Linear Price Variance Process:
dS = µS dt+ σ

√
S dz

ii. Constant Price Variance Process:
dS = µS dt+ σ dz,

The Linear Price Variance Process describes a situation where changes are small and the variance
of price changes increases with the stock price but at a slower rate than in geometric Brownian
motion. Thus for the Linear Price Variance Process the variance of the rate of return decreases
rather than remain constant. Conversely the Constant Price Variance Process characterises stock
price changes that have a constant variance. Both the Linear Price Variance and Constant Price
Variance Processes are diffusion limits of jump processes highlighted by Cox and Ross (1976).

Poisson Processes

A Poisson process is a simple and widely used stochastic process for modelling the times at which
arrivals enter a system. Arrivals may occur at arbitrary positive times, and the probability of an
arrival at any particular instant is 0. It is convenient to define a Poisson process in terms of the
sequence of interarrival times: times between successive arrivals, t1, t2, . . . , which are defined to be
independent and identically distributed (i.i.d.).

A Poisson process is a renewal process: arrival process for which the sequence of arrival times is
an i.i.d. random variable X ′(t), in which the interarrival intervals have an exponential distribution
function for some real λ ≥ 0, and each X ′(t) has the density

f(X ′(t)) = λe(−λt) for t ≥ 0 . (4.4)

The parameter λ is the arrival rate of the process. For any interval of size t, λt is the expected
number of arrivals in that interval.

A random variable X ′(t) taking values in {0, 1a, 2a, 3a, . . . } in k events is said to have a Poisson
distribution with parameter λ ≥ 0 and jump size a ≥ 0 if

P (X ′(t) = ka) =
(λt)k

k!
e−λt : k ∈ (0, I+) . (4.5)

A process X ′(t) with stationary, independent increments has a version with all sample paths constant
except for upward jumps of length one if and only if there is a parameter λ ≥ 0 such that the
characteristic function takes the form

φ(X ′(t)) = e[λ(eit−1)] . (4.6)

The Poisson process is a process with stationary, independent increments. Brownian motion shares
these properties with the Poisson process, but unlike Brownian motion, the Poisson process is
discontinuous, its sample paths are constant except for upward jumps.

42



CHAPTER 4. STOCHASTIC STOCK PRICE PROCESSES F. Josephidou

Jump Processes

Cox and Ross (1976) noted that the jump process represents the movement of stock prices associated
with information arriving in packages rather than as a continuous stream. If x denotes the current
state of the world, then the Markov jump process takes the form

dS = µ(x) dt+ dq , (4.7)

where dq are the increments of the pure jump process q, given by

dq =

{
k(x)− 1, with probability λ(x) dt ,

0, with probability 1− λ(x) dt ,
(4.8)

where k(x) has a distribution dependent on the current state x, and λ is the intensity of the process:
the average number of events per interval.

Cox and Ross (1976) assumed the current state x = S to reflect that all states of information are
contained in the current stock price S.

To demonstrate the particular jump processes that are special cases of Equation (4.7), that in the
limit become the Linear Price Variance and Constant Price Variance processes let the intensity
λ(S) = λS and the drift µ(S) = µS. For the rate of return, dS/S, the drift is constant and assumes
the information arrives more frequently when the stock price is higher. Additionally the distribution
for the jump in prices is independent of the price. The distribution of the jump component is given
by

dq =

{
k − 1, with probability λS dt ,

0, with probability 1− λS dt .
(4.9)

Hence the stochastic process for price changes becomes

dS = µS dt+ dq . (4.10)

Cox and Ross (1976) described Equation (4.10) as a generalisation of a class of stochastic processes
known as the birth and death process: births increase the state variable by one and conversely
deaths decrease the state variable by one. The local mean and variance for Equation (4.10) are
given by

E [dS] = (µ+ λE [k − 1])S dt

and

V ar [dS] = λE
[
(k − 1)2

]
S dt .

(4.11)
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To construct a pure birth and death process, ignore the drift in Equation (4.10) and let the random
variable k take on two values, k+ > 1 and k− < 1 with respective conditional probabilities π+ and
π−. This gives the stochastic process

dS =


k+ − 1, with probability π+λS dt ,

k− − 1, with probability π−λS dt ,

0, with probability 1− λS dt .
(4.12)

If a stock price S is made up of individual, stochastically independent units whose sum value is S,
then λdt represents the probability of an event occurring for any one unit. An event is considered
a birth process if k+ − 1 additional units are added with probability π+, and conversely a death
process event has 1− k− fewer units with probability π−.

Taking the limits of Equation (4.10) as k+ −→ 1 and k− −→ 1 and λ −→ ∞ produces the Linear
Price Variance Process

dS = µS dt+ σ
√
S dz , (4.13)

were µ and σ are given by

µ = λE[k − 1]

and

σ =
√
λE[(k − 1)2] .

(4.14)

Another specialisation of the general Markov jump process, Equation (4.7), can be used to obtain
the Constant Price Variance Process. To accomplish this assume the intensity λ and the value
increments are both constant. Then the jump component for the stochastic process given by
Equation (4.10) becomes

dq =


k+ − 1, with probability π+λ dt ,

k− − 1, with probability π−λ dt ,

0, with probability 1− λ dt .
(4.15)

Cox and Ross (1976) refers to this as the absolute process where values grow endogenously at the
exponential rate µ and where bulk exogenous changes to the value of size k− 1 occur with intensity
λ. The local mean and variance of the absolute process are given by

E [dS] =
(
µS + λ

[
π+(k+ − 1) + π−(k− − 1)

])
dt

and

V ar [dS] = λ
[
π+(k+ − 1)2 + π−(k− − 1)2

]
dt .

(4.16)
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Taking the diffusion limit of the absolute process of Equation (4.10) yields the diffusion for the
Constant Price Variance Process

dS = µS dt+ σ̄ dz , (4.17)

where the drift µ is the same as the drift in the absolute process and the standard deviation σ̄ is
given by

σ̄ =
√
λ [π+(k+ − 1)2 + π−(k− − 1)2] . (4.18)

In taking the limit of the jump process to obtain the diffusion, whilst maintaining the instantaneous
mean and variance, the mean of the jump process is set to zero so that the resulting Wiener process
dz has mean zero.

Now consider which jump process has geometric Brownian motion as its limit? The answer is
another modified general Markov jump process from Equation (4.7) given as

dS = µS dt+ dq , (4.19)

with jump component

dq =

{
k+ − 1, with probability λ dt ,

0, with probability 1− λ dt ,
(4.20)

where the intensity λ is independent of the stock price S.

For geometric Brownian motion the variance of the price changes is proportional to a constant (σ2)

times the square of the stock price. This limiting behaviour in the process above is due to the units
of value comprising the stock price which are dependent on S, whereas the intensity λ is independent
of the stock price S. When a new package of information arrives, the units comprising the stock
price are affected equally. The dependence of events is a characteristic of the absolute process.

Mixed Jump Diffusion Processes

The difference between the jump processes, which leads to the differences between limiting diffusions,
is that in the jump process leading to geometric Brownian motion the jump size is proportional to
the stock price S.

R. C. Merton (1976) considered the price of a stock that undergoes jumps by noting a stochastic
process with a Wiener component as well as a jump component as

dS

S
= (µ− λk) dt+ σ dz + dq , (4.21)
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where µ is the instantaneous expected return on the stock, σ2 is the instantaneous variance of the
return conditional on the Poisson event not having occurred, dz is a standard Wiener process and
dq is the increment in the pure jump process q, given by

dq =

{
Y − 1, with probability λ dt ,

0, with probability 1− λ dt ,
(4.22)

where Y is a random variable and Y − 1 is an impulse function: zero everywhere but infinitely high
at the origin, producing a finite jump in S to SY . The increment in the pure jump process dq and
standard Wiener process dz are assumed to be independent, λ is the intensity or mean number of
arrivals per unit time and k = E[Y − 1] is the expected percentage change in the stock price if the
Poisson event occurs.

R. C. Merton (1976) commented that the resulting sample path for S(t) will be continuous most of
the time with finite jumps of differing signs and amplitude occurring at discrete points in time.

4.1.3 Truncated Lévy Flight Processes

Mantegna and Stanley (1994) proposed a stochastic process known as the truncated Lévy flight
which exhibits a slow convergence to Gaussian behaviour. This process has application to stock
price time series. The truncated Lévy flight is constructed by taking the sum of n i.i.d. random
variables Xi with finite variance

Sn =

n∑
i=1

Xi . (4.23)

The Central Limit Theorem states that as n −→ ∞, the random variable Sn will converge to a
normal distribution. The rate of convergence is not specified and depends on the distribution of Xi.
Suppose the random variables Xi share the same distributions as the random variable X. Then the
truncated Lévy flight is characterised by the probability distribution for X

T (x) =


0, if x > l ,

c1L(x), if −l ≤ x ≤ l ,
0, if x < −l ,

(4.24)

where c1 is a normalising constant, l is the cut off length and L(x) the symmetric Lévy stable
distribution defined by

L(x) =

∞∫
0

e−γ∗q
α

cos(qx) dq , (4.25)
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where α (0 < α ≤ 2) is the characteristic exponent and γ∗ > 0 the scale factor.

For appropriate values of the parameters of the Lévy stable distribution L(x) and the cut off length
l the truncated Lévy flight may provide a reasonable empirical fit to daily logarithmic price data.

4.1.4 The Price Process Assumptions

Geometric Brownian motion is the model on which the Black and Scholes (1973) and R. C. Merton
(1973) (BSM) equation is based on. Cox and Ross (1976) pointed out that the critical factor in the
BSM analysis was the precise description of the stochastic process governing the behaviour of the
basic asset. Further, R. C. Merton and Samuelson (1974) and R. C. Merton (1976) were critical of
the assumption in the BSM derivation that trading takes place continuously in time and the price
dynamics of stock have a continuous sample path with a probability of one. Cox and Ross (1976)
and R. C. Merton (1976) provide an examination of the option pricing problem for alternative
stochastic processes.

There are two paths to take for relaxing the assumption that stock prices follow a geometric
Brownian motion:

i. Specify an alternative stochastic process for the price and use arguments similar to those used
by Black and Scholes (1973) to arrive at the appropriate differential equation, which may be
solved using the boundary condition given by the option.

ii. Alternatively to specify a stochastic model for the stock price volatility, σ(S, t). Heston (1993)
offers a model of stochastic volatility that is not based on the Black and Scholes (1973) formula.
Heston (1993) assumes the spot returns follow a diffusion process whereby volatility varies with
time. The model shows that a higher variance raises the prices of all options in line with
the BSM equation. It is important to realise that the implied variance may not equal the
variance of the spot returns given by the true process due to the risk premium associated
with exposure to volatility changes. This form of risk premium is obtained by arbitrage and
consistent with conditional heteroscedasticity in consumption growth and asset returns. The
stochastic volatility model therefore can explain some properties of the option prices in terms
of the underlying distribution of sport returns. The disadvantage of these models is that they
do not usually have closed-form solutions.

Naturally, the paths of changing the price process assumption explicitly and relaxing the assumption
of constant volatility are related. Bakshi et al. (1997) provides a study of option pricing issues that
are related to the hybrid stochastic models for volatility and returns

Relaxing the price process assumption that stock prices follow a geometric Brownian motion this
paper will follow option (i): specifying an alternative stochastic process for the price used by the
Black and Scholes (1973) method to arrive at the appropriate differential equation which may be
solved by the option boundary conditions. Although there is no guarantee that this procedure will
arrive at a closed-form solution.

47



CHAPTER 4. STOCHASTIC STOCK PRICE PROCESSES F. Josephidou

4.2 Literature Review

4.2.1 Statistical Study of the Distribution of Stock Price Returns

A method of characterising the behaviour of a random variable is to describe it in terms of a
distribution function. Officer (1972) reviewed the distribution of stock price returns to verify if the
distribution is best described by the symmetric stable class of distributions. A distribution is stable if
a linear combination of two independent random variables has the same distribution as the individual
variables. Officer (1972) noted that the distribution of stock returns has some characteristics of a
non-normal generating process. In particular the results indicate that the distribution is fat-tailed
relative to a normal distribution. However characteristics were also observed that were inconsistent
with a stable non-normal generating process: a statistical model that is being used to represent the
supposed random variations in observations. Officer (1972) noted that the distributions become
thinner tailed for larger sums of daily stock returns but not to the extent that it approximates a
normal distribution. Officer (1972) disagreed with some of the conclusions of Mandelbrot (1963):
who examined the distribution of stock returns in the context of a non-normal stable Paretian
distribution and Fama (1965): who noted that the distribution of monthly returns belonged to
a non-normal member of the stable class of distributions, and found that the standard deviation
appeared to be a well behaved measure of scale.

A distinguishing feature of symmetric non-normal stable class of distributions is peakedness and
fat-tails when compared with the normal distribution. The parameter which measures the degree
of peakedness and the fatness of the tails of stable distributions is the characteristic exponent, also
known as the stability parameter, α. The range of characteristic exponents, for which a probability
density function is known in closed form, is bounded by the normal distribution, for α = 2, and the
Cauchy distribution: that does not have a mean, variance or higher moments defined, for α = 1.
That is the range of the characteristic exponent is bounded by 1 ≤ α ≤ 2.

Officer (1972) examined the stationary process: a stochastic process whose unconditional joint
probability distribution does not change when shifted in time; consequently parameters such as
mean and variance also do not change over time, of the mean estimate of the characteristic exponent
ˆ̄α: an average of the n estimates α̂ of α, namely

ˆ̄α = 1/n

n∑
j=1

α̂j , (4.26)

and therefore the constancy of α of the distribution of stock returns through time. These properties
are central to determining whether the stock returns distribution can be approximated by a member
of the stable class of distributions.

Initially Officer (1972) estimated the distribution of monthly returns of a random sample of n = 39

stocks listed continuously from January 1926 to June 1968: 509 observations. Officer (1972) reported
that the distribution of monthly returns indicated a non-normal distribution with an estimated
characteristic exponent α̂ of about 1.51.

Officer (1972) took the daily stock returns from a random 50 stocks taken from the sample of
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136 stock examined that were listed over the entire sample period from June 2, 1962, to November

6, 1969. This period was split into eight sub-periods each with 217 observations. Officer (1972)
found that the mean estimated characteristic exponent ˆ̄α, varied between 1.61 and 1.68 for the
sub-periods and each had a standard deviation of approximately 0.15. Officer (1972) concluded that
the distribution of stock returns, defined by the estimated characteristic exponent α̂ values, had not
changed substantially over the periods.

The central issue for Officer (1972) in describing the properties of the distribution of stock returns:
stability and scale parameters, was determining whether the process generating the distribution
of stock returns was a non-normal sable distribution. If the stock returns are distributed by a
stable distribution whose parameters are constant over time, then the results should show smaller
α̂’s for larger intervals. Alternatively if the process was one suggested by Press (1967): returns
are distributed as if drawn from a normal distribution with changing scale parameter: standard
deviation, then α̂’s should increase with the length of interval and should approach 2.0 for larger
sums.

An additional check on the appropriateness of the supposed stability for small sums requires an
examination of the parameters of the distribution. An important parameter is the scale parameter
which measures the degree of dispersion of the distribution. If the scale parameter behaves in a
predictable fashion then any measure of risk that is a function of the scale parameter is independent
of the daily, monthly, yearly, etc time interval. An estimate of scale parameter is obtained from
the sample fractile: the cut-off point where the distribution reaches a certain probability, and
is independent of the stable distribution for 1.0 < α < 2.0. Officer (1972) found that the scale
parameter is invariant for sums of stock returns up to five months as expected. What is more the
standard deviation is well behaved. A further test on the behaviour of the standard deviation as
a measure of scale was performed on the daily returns. Because daily tests are conducted over a
shorter time span they are less likely than monthly tests to run into the problem of non-constancy
of the parameters of the distribution. The results show a tendency for the α̂ to increase slightly
for larger sums, where the reverse was expected. The fact that the α̂ of sums of daily returns do
increase suggests a modified model with a finite second moment for the distributions. The behaviour
of alternative measures of scale for the distributions of sums of daily stock returns was also tested.
Once again the standard deviation appeared to be a good measure of scale and superior to other
measures considered.

However these results do not mean that it is inappropriate to use a non-normal stable distribution to
approximate the distribution of stock returns. The distributions examined have fat-tails so that the
normal distribution is going to give a poor approximation of the distribution of returns. The well
behaved standard deviation suggest the distributions will have some properties which non-normal
stable distributions do not have. It may be that a class of fat-tailed distributions with finite second
moments will give a better approximation of the distribution of stock returns.

Officer (1972) tested the stable Paretian and compound events models hypothesis for monthly and
daily return data by computing the characteristic exponent α and observing its changes over the
sample path.

For monthly returns Officer (1972) found that the behaviour of α was inconsistent for both models.
The stable Paretian model predicts a smaller measured α over larger time intervals, and the
compound events model predicts an increase in the measure of α to α = 2, which is the characteristic
of a normal distribution. Officer (1972) states that for monthly returns α appeared to be constant,
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evidence that not much is lost by assuming the distribution of monthly returns is stable.

For daily returns Officer (1972) found a slight increase in α suggesting that a modified model with
a finite second moment for the return distribution might be appropriate, supporting the argument
for the compound events model. Further support is provided by the fact the standard deviation of
the daily returns seems well-behaved.

The findings on the daily returns are important from the portfolio manager’s point of view who is
likely to re-hedge more frequently than once a month. Consequently it is the distribution of daily
returns that is important from an option pricing perspective.

4.2.2 The t-distribution of Returns

A class of fat-tailed distributions with finite second moments that give a better approximation to
the distribution of stock returns is the Praetz (1972) scaled t-distribution. This distribution is the
only known simple distribution to fit changes in share prices. It provides a better fit to the data
than the Mandelbrot (1963) stable Paretian, the Press (1967) compound events process and the
normal distribution.

Praetz (1972) modified a theory of the distribution of share price changes derived by Osborne (1959)
by extending the Brownian motion principle of share price changes to account for the changing
variance of the stock market. This produces a scaled t-distribution that is a good fit to series of
share price indices.

If S(t) represents the price of a share at time t, then the change in the logarithmic share price from
time t to t+ τ is given by

z = lnS(t+ τ)− lnS(t) . (4.27)

Osborne (1959) notes that the prices can be interpreted as an aggregate of decisions in statistical
equilibrium where the equilibrium distribution function of z is given by

f(z) =
e(−z2/2σ2τ)

√
2πσ2τ

, (4.28)

where σ2 is the variance of z over unit time intervals. This distribution is the same as that of a
particle in Brownian motion, thus the price S(t) follows a geometric Brownian motion. The theory
of Brownian motion used by Osborne (1959) implies the values of z over non-overlapping intervals
of time constitute a random walk: the values of z are mutually independent and have a common
probability function. Praetz (1972) was concerned with the common probability distribution function
of the random walk rather than the independence of price changes.

Osborne (1959) implied that the distribution of share price changes should be normally distributed.
However the evidence accumulated concludes that the distribution appears to be non-normal. Fama
(1965), Madan and Seneta (1990), Mandelbrot (1963), Press (1967) and Kon (1984) conclude
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that the distribution of share price returns, relative to the normal distribution, is a symmetrical
distribution with fat-tails, high peaked centre and hollow in between.

Praetz (1972) conducted a χ2 goodness-of-fit test plus a test based on the third and fourth sample
moment of skewness and kurtosis and concluded that the series of share price changes were not
normally distributed. Praetz (1972) noted that the stock indices are well fitted by the scaled
t-distribution at the one percent level of significance. However for individual stock prices Praetz
(1972) noted that the situation is not as promising due to the discrete nature and the occurrence of
a large number of zero price changes, rejecting the normal distribution proposed by Osborne (1959).

Osborne (1959) assumed that the variance of price changes over unit time interval, σ2, is a constant.
In practice this is not so. The financial markets have periods of activity followed by periods of
inactivity ensuring the information that affects prices does not arrive uniformly but in bursts. In
Brownian motion σ2 is proportional to the degree of activity and evidenced by σ2 varying as the
degree of activity in the market varies.

Praetz (1972) suggested that the probability density function of the price variable z be conditioned
on the value of σ2. Taking a unity time interval τ = 1 for simplicity and z having a non-zero mean
µ, then the probability density function becomes

f(z|σ2) =
e(−(z−µ)2/2σ2)

√
2πσ2

. (4.29)

If h(z) is the distribution of z that takes into account the random nature and distribution of σ2,
then h(z) is given by

h(z) =

∞∫
0

f(z|σ2) g(σ2) dσ2 with 0 ≤ σ <∞ . (4.30)

Praetz (1972) suggests the distribution of σ2, the variance of price changes, is a random variable
with distribution function g(σ2) given by

g(σ2) =
σ̄2m(m− 1)mσ−2(m+1)e−(m−1)σ̄2/σ2

Γ(m)
, (4.31)

where the expected return σ̄2 = E[σ2] and variance of σ2 is σ̄4/(m − 2) and m is the degrees of
freedom. This is known as an inverted gamma (Γ) distribution. When g(σ2) in Equation (4.31) is
substituted into Equation (4.30) then h(z) is obtained by integrating as

h(z) = [1 + (z − µ)2/σ̄2(2m− 2)]−m−1/2Γ(m)[(2m−m)π]1/2σ̄ . (4.32)

This is a t-distribution of 2m = n degrees of freedom, where n is the sample size from a normally
distributed population with expected mean value µ and variance σ2, except for a scale factor [n/(n−
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2)]1/2. Thus the distribution of (z−µ)/σ̄ is a scaled t-distribution. Therefore the distribution of the
share price S(τ) at time τ can be obtained from z = lnS(τ)− lnS(0). Thus giving

f [S(τ)] =
{1 + [lnS(τ)− lnS(0)− µτ ]2/σ̄2τ(2m− 2)}−m−1/2Γ(m+ 1/2)

σ̄τ1/2S(τ)Γ(m)
√

(2m− 2)π
, (4.33)

where z has a mean of µτ and variance of σ2τ over a time interval τ and S(0) denotes the price at
time 0.

The distribution function g(σ2) of the variance has a mean σ̄2, variance σ̄4/(m − 2) and a mode at
σ̄2(m− 1)/(m+ 1). It is 0 at σ2 = 0, rises to a peak and has a long tail to the right. This represents
the distribution of the variance of a share price and reflects the changing market expectations of
investors.

For the share price indices the t-distribution describes the changes in logarithmic prices. Thus
enabling explicit probability statements concerning the changes in price. These probabilities are
larger for large changes than those of a normal distribution. However for individual prices the
situation is not as promising. The distributions used by Mandelbrot (1963) to represent price
changes are between the Cauchy and a normal distribution. The Praetz (1972) scaled t-distribution
also lies between the same two distributions. Hence the t-distribution can be considered as an
alternative to the stable Paretian model.

Praetz (1972) proposed a stochastic framework for the distribution of the volatility parameter
σ2. Rejecting the normal distribution advanced by Osborne (1959): share price changes follow on
from the Brownian motion rationale, and concluding that the distribution is in fact non-normal,
comprising a symmetrical distribution with fat-tails, a higher peaked centre and hollow in-between
compared to a normal distribution.

4.2.3 The Empirical Evidence on Return Distributions

There have been a number of investigations into the statistical qualities of stock price returns:
Officer (1972), Madan and Seneta (1990), Mandelbrot (1963), Fama (1965), Press (1967), Praetz
(1972) and Kon (1984) that include analytical models for stock price changes that are relevant
for option pricing. Accepting the conclusions drawn by Officer (1972) and Praetz (1972) that a
class of fat-tailed distributions with finite second moments will give a better approximation of the
distribution of stock returns, a comprehensive description and explanation of the stock price returns
that adhere to this theory are presented here for the:

i. Variance Gamma Model.

ii. Stable Paretian Distribution.

iii. Compound Events Model.

iv. Discrete Mixture of Normal Distributions.
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The models considered proposed an alternative to the normal distribution for the stock returns.
Acknowledging Officer (1972) and Praetz (1972) the models will be reviewed in light of the elements
that describe the foreign exchange (FX) market delineated in Chapter 3: order flow, bid-ask spread
and price triangulation, to determine which model can incorporate the system of attributes to
explain the FX market.

The variance gamma model falls into the category that respecifies the stochastic process for the
stock price volatility, σ(S, t), whereas the stable Paretian, compound event and discrete mixture of
normal distributions models specify an alternative stochastic process for the stock price return.

The latter category is of a particular interest. This category can be applied to the Black and
Scholes (1973) method to arrive at the differential equation which may be solved using the boundary
conditions defined by the option intrinsic value.

The Variance Gamma Model

Madan and Seneta (1990) proposed the variance gamma model for stock returns as a practical
alternative to the role of Brownian motion. The variance gamma model is an extension of Brownian
motion, obtained by evaluating a normal process at a random time defined by a gamma process.
Thus the variance gamma model replaces the time in the Brownian motion with a gamma process.
The variance gamma process is proposed as a model for the uncertainty underlying security prices.
The model states that the unit period distribution is normal conditional on a variance that is
distributed as a gamma variate: a class of random variable associated with a gamma function. The
advantages of the variance gamma model include long tails, continuous-time specification and finite
moments of all orders. The process is a pure jump process where small jumps occur very frequently
and large jumps occur only occasionally and approximated by a compound Poisson process: where
the jumps arrive randomly according to a Poisson process and the random size of the jumps is
specified by a probability distribution, with high jump frequencies and low jump magnitudes.

The variance gamma model proposed by Madan and Seneta (1990) satisfies the following empirical
properties:

i. Long tails relative to the normal distribution for daily returns, with returns over longer periods
approaching normality: Fama (1965).

ii. Finite moments for lower powers of returns.

iii. Consistent continuous-time stochastic process with independent stationary increments belonging
to the same family of distributions irrespective of the length of time.

The variance gamma model is well placed in meeting the criterion that satisfies the findings of
Officer (1972) when compared to other models. Conversely Brownian motion does not comply with
the first property, the Mandelbrot (1963) stable Paretian model fails on the second and third and
the Praetz (1972) t-distribution fails on the third point. Although the Poisson distribution mixture
of normal distributions of the Press (1967) compound events model possesses all the properties
described above, the Madan and Seneta (1990) variance gamma model has a further advantage of
being a pure jump process of a large number of small jumps. Madan and Seneta (1990) state that
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the variance gamma model is a limit of a particular sequence of compound events models in which
the arrival rate of jumps approaches infinity, while the magnitudes of the jumps are concentrated
near the origin. The variance gamma model respects the intuition underlying the continuous sample
path of Brownian motion as a model.

When considering the empirical relevance of the variance gamma model for stock market returns
Madan and Seneta (1990) compared the variance gamma model with the Mandelbrot (1963) stable
Paretian distribution, the Press (1967) compound event model and the normal distribution using
a χ2 goodness-of-fit statistic on seven class-intervals for unit sample variance data on nineteen
stocks quoted on the Sydney Stock Exchange. Madan and Seneta (1990) found that the variance
gamma model outperformed the other models in attaining the minimum χ2 statistic twelve out of
nineteen times, followed by the compound events model with seven times and five times for the
stable Paretian distribution and two for the normal distribution.

The variance gamma is obtained from the normal by the variance-mean mixture: a probability
distribution of a random variable that is derived from a collection of other random variables. Hence
it comprises a continuous probability distribution of a random variable g that changes over unit
time and follows a gamma process with mean rate 1, variance rate ν and mixing probability density
g(ν). The probability density function (pdf) is a weighted average of a family of pdf’s where the
weight is the density function of the random variable. Let R(t) be the return over a unit time period,
stated formally as

R(t) =
S(t+ 1)

S(t)
, (4.34)

taking logarithms and rearranging:

lnR(t) = lnS(t+ 1)− lnS(t) , (4.35)

where S(t) is the stock price at time t and lnR(t) is normally distributed with mean µ and random
variance σ2V , where µ and σ2 are known constants and V follows a gamma process with mean rate of
1 and variance rate of ν. The distribution of V is taken to be a two-parameter gamma distribution:
a continuous probability distribution defined in terms of its gamma function given by

g(ν) =
cγ νγ−1 e−cν

Γ(γ)
, (4.36)

where c is the scale parameter: the larger the scale parameter the more spread out the distribution
and γ is the shape parameter: affects the shape of the distribution estimated using higher moments
such as skewness and kurtosis, g(ν) the probability density and Γ is the gamma function extension
of the factorial function to real numbers. More generally, for any positive real number γ, Γ(γ) is
defined as

Γ(γ) =

∞∫
0

xγ−1e−x dx for x > 0 . (4.37)
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If random variable X = ln(R)−µ is normally distributed with mean zero and variance one, then the
probability density function of a normal variance-mean mixture of X, f(x), with mixing probability
density g(ν) is given by

f(x) =

∞∫
0

e(−x2/(2σ2ν))

σ
√

2πν
g(ν) dν . (4.38)

Equation (4.38) has no closed-form expression. However the characteristic function for the probability
distribution of X, φx(u), has a closed-form expression obtained by conditioning on V

φx(u) =
[
1 + (σ2v/m)(u2/2)

]−m2/v
, (4.39)

where m = γ/c is the mean of the gamma density g(ν) and u = γ/c2 is its variance. From the form
of the characteristic function only (σ2v/m) and −m2/v are identified. Given that σ2 serves as the
scale parameter for V , the mean of V can be taken to be unity: m = 1 or γ = c.

Madan and Seneta (1990) show that the variable V can be viewed as a random time change and
setting m = 1 or γ = c is consistent with supposing that the expected random time change is unity for
the unit period return. The characteristic function of the unit period return distribution therefore
becomes

φx(u) =
[
1 + (σ2vu2/2)

]−1/v
. (4.40)

The higher moments of the variance gamma distribution are obtained by conditioning on V . The
variance gamma has finite moments of all orders and in particular the second and fourth moments
which are given by

EX2 = σ2 and EX4 = 3σ4(1 + v) . (4.41)

The kurtosis is therefore 3(1 + v). Under normality the kurtosis is 3. The proportional excess of the
kurtosis over 3 is v, and may be regarded as a measure of the degree of long tailedness.

Madan and Seneta (1990) considered the effects of varying v on the density function of the unit
period variance gamma distribution. Madan and Seneta (1990) noted that as the degree of long
tailedness, v, increases the distribution of the density function, increasing the probability near the
origin: becoming more peaked, as well as to increase the tail probabilities: fatter-tailed, at the
expense of the intermediate range.

If g is the change over time T in a random variable that follows a gamma process with mean rate 1

and variance rate of ν then the variance gamma model can be characterised by letting g define the
rate at which information arrives during time T . If g is large, a great deal of information arrives and
the distribution has a large mean and variance, conversely if g is small, little information arrives
and the mean and variance are small.
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Madan and Seneta (1990) introduced a multivariate extension of the variance gamma model by
letting X denote a vector of random variables distributed conditional on the non-negative random
variable V as a multivariate normal with mean vector zero and variance-covariance matrix ΣV . By
conditioning on V , the joint characteristic function of X, φx(u) where u is a vector, is given as

φx(u) =
(
1 + vuTΣu/2

)−1/v
, (4.42)

which generalises the univariate characteristic function, see Equation (4.40). Given that φx is
a function of u via the quadratic form uTΣu, the joint density is elliptical and the conditional
expectation function of Xi is linear.

A shortcoming of the multivariate model is that the measure of kurtosis, v, is the same for all
distributions and hence have the same kurtosis.

The variance gamma meets the non-normal, higher peaked and fatter-tailed criterion with finite
moments of all orders, in particular the second, set out by Officer (1972) and Praetz (1972). However
the univariate gamma model does not lend itself to applying the FX attributes: order flow, bid-ask
spread and triangulation, as a system determining FX price return and is disregard on that basis
for modelling the FX market.

Conversely the multivariate model may be considered by applying the FX attributes as a vector of
random variables notwithstanding the limitation of this application due to the constant measure of
kurtosis for all the distributions.

The Stable Paretian Distribution

Mandelbrot (1963) presented a new model of price behaviour in speculative markets. The feature
of this model is starting from the Bachelier (1900) process as applied to lnS(t) instead of S(t). The
model replaces the Gaussian distributions throughout by another family of probability laws, referred
to as stable Paretian: Lévy (1925). The Gaussian is a limiting case of the stable Paretian and as
such is a generalisation of the Bachelier (1900) process. However, even the logarithmic form of the
Bachelier (1900) random walk model inadequately describes the price changes on the basis that the
tails of the distribution appear to be too long to be accounted for by a normal distribution. Empirical
distributions of price changes are too peaked to be relative samples from Gaussian populations:
Officer (1972) and Praetz (1972). Mandelbrot (1963) noted that the histogram of price changes was
indeed unimodal. However the distribution of outliers fitted to the variance of the price changes are
much lower and flatter than the distribution of the data itself. Mandelbrot (1963) remarked that
the tails of the distribution of price changes were in fact so extraordinarily long that the sample
second moments typically varied in an erratic fashion. The stable Paretian distribution with infinite
second moments replaces the Gaussian normal with well behaved variance in the Mandelbrot (1963)
model.

Mandelbrot (1963) posed a non-Gaussian stable process with a finite mean but an infinite variance
as a possible explanation for the erratic behaviour of the variances of successive price changes. Fama
(1965) supports the hypothesis of non-zero mean, long-tailed, peaked, non-Gaussian distributions
for logarithmic price changes. However, Cootner (1962) and Godfrey, Granger, and Morgenstern
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(1964) took an opposing view. On examining securities from a time and frequency point of view
they concluded that there was no evidence in any series that the process which generated them
behaved as if it possessed an infinite variance. Mandelbrot (1963) attempted to address this by
proposing a model for the behaviour of security price changes in the mathematics of stable laws.

Since the stable Paretian probability laws are relatively unknown, Mandelbrot (1963) discusses the
important mathematical properties of these laws in Appendix C on page 157.

Let S(t) be the price of a stock at the end of time period t. Successive differences of the form
S(t+ T )− S(t) are independent Gaussian or normally distributed random variables with zero mean
and variance proportional to the differencing interval T . Noting that the empirical distribution
of the prices changes were too peaked relative to the normal with long tails and irregular second
moments, Mandelbrot (1963) presented the Lévy stable distribution as an alternative potential
model for returns. The stable distributions are a class of distributions where a linear combination
of two independent random variables has the same distribution as the individual variables and
satisfies the following relationship

a1U + a2U
∆
= aU where a = a1 + a2 , (4.43)

where U is a random variable, a1 and a2 represent scale factors closely related to the variance in
the Gaussian case, and a is a function of a1 and a2. The normal distribution satisfies the above
relation, as does the Cauchy distribution: a distribution that does not have a mean, variance or
moment generating function defined. The normal distribution is the only stable distribution with
a finite variance. The Cauchy distribution, on the other hand, has an infinite second moment but
a finite expectation. All stable distributions with a finite expectation can be thought of as lying on
a continuum between the Cauchy distribution and the Gaussian.

The standard Gaussian variable, with zero mean and unit variance, is a solution to Equation (4.43).
The Gaussian variable expresses an unchanging consistency under addition, hence it is referred to as
being stable: a linear combination of two independent random variables has the same distribution,
up to location and scale parameters. The normal distribution satisfies this relationship as the only
stable distribution with a finite variance. When the variance is allowed to be infinite the scale
factors are not defined by any moment.

Mandelbrot (1963) proposed the alternative Paretian distribution, a power-law: change in one
quantity resulting in a proportional change in another quantity, skewed probability distribution
with heavy, slow decaying tails that contain large amounts of the data. Further, Fama (1965) noted
the empirical distributions of price changes are leptokurtic: higher peaks and fatter-tails than a
normal distribution with the same mean and variance, rejecting the hypothesis that price changes
are normally distributed. Mandelbrot (1963) and Fama (1965) agreed that the daily change in the
logarithmic prices of stocks follow a stable Paretian distribution with characteristic exponent or tail
index power value α ' 2.

Fama (1965) noted that successive price changes are independent, supporting the application of the
Central Limit Theorem: where the mean of a sample of data having any distribution converges upon
a normal distribution as the sample size tends to infinity, to the price change or return distribution.
However, the distribution of price differences, or logarithmic price differences, might not be identical
for successive price changes. The distribution of price changes may have a volatility that is a function
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of the stock price as in geometric Brownian motion, see Equation (B.15) on page 156. Officer
(1972) took exception to the conclusions of Mandelbrot (1963) and Fama (1965). Although Officer
(1972) found that the distribution of stock returns were fat-tailed relative to a normal distribution,
he also observed characteristics that were inconsistent with non-normal processes. Officer (1972)
highlighted that the daily stock returns became thinner tailed for larger sums but not sufficiently
to display a normal distribution. Accepting the Fama (1965) assertion of the independence of
successive price changes the focus will be on the form of the distribution of price changes.

Mandelbrot (1963) proposed the stock distribution to model logarithmic price changes for a unit time
interval that preserves the convenient feature of the Gaussian model: that the various increments
depend only upon T where

L(t, T ) = lnS(t+ T )− lnS(t) , (4.44)

is a Gaussian random variable for every value of T : price increments over days, weeks, months,
and years would have the same distribution. The only thing that changes with T is the standard
deviation of L(t, T ) and the increment L(t, 1) = lnS(t+ 1)− lnS(t) is a random variable with infinite
population moments beyond the first. This implies the density function f(u) for random variable U
is such that

∞∫
−∞

f(u)u2 du diverges but

∞∫
−∞

f(u)u du converges . (4.45)

It is natural to assume the density function f(u) is well behaved: functions which have derivatives
of all orders at all points and which, together with their derivatives, fall off at least as rapidly as
u−n as u −→∞, no matter how large n is. Therefore for large u, as u −→∞, f(u)u3 tends to ∞ and
f(u)u2 tends to zero. If the second moment of the logarithmic price changes diverge and the first
moment is well behaved then density function f(u) must decrease faster than u−2 but slower than
u−3. The simplest expressions of this type are those with an asymptotically Paretian behaviour.

Such stable processes do not have finite variance. This has been posed as a possible explanation for
the erratic behaviour of the variances of successive price changes observed empirically. Alternative
models in which prices have finite second moments might explain price fluctuation variances at least
as well, and at the same time might not require that all previous portfolio selection theory based
upon finite variance distributions and quadratic loss functions to be abandoned. Such concern has
been expressed by Cootner (1964), who also feels the sample evidence (based on cotton prices) is
not at all compelling.

Officer (1972) and Praetz (1972) noted that a class of fat-tailed distributions with finite second
moments will give a better approximation of the distribution of stock returns. The Mandelbrot
(1963) stable Paretian model proposes a skewed probability distribution with heavy, slow decaying,
fat-tails in accordance with Officer (1972) and Praetz (1972). However the model deviates from the
requirement of finite higher moments. Mandelbrot (1963) suggested an infinite second moment as
an explanation of the erratic behaviour of the variances of successive price changes. Based on this
fundamental divergence from the criterion set out above, the Mandelbrot (1963) stable Paretian
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distribution can be excluded as a potential model, incorporating the systemic attributes, for the FX

market.

The Compound Events Model

Press (1967) advocated a statistical model for the distribution of security price changes: the
compound events model, where the logarithmic price changes are assumed to be independent random
walks. The model proposed is distinguished in that the logarithmic price changes are not assumed
to follow a stable distribution which could be normal. Instead the logarithmic price changes are
assumed to follow a Poisson distribution mixture of normal distributions. Such a distribution is
skewed and leptokurtic: more peaked at its mean than a comparable normal distribution, and has
greater probability mass in its tails than the distribution of a comparable normal variate, aligning
with the price change distribution outlined by Mandelbrot (1963) and Fama (1965).

Press (1967) noted that there is no need to conclude that the variance is infinite, because of non-zero
higher-order cumulants: quantities that provide an alternative to the moments of the distribution,
observations will be found further from the mean and that the modal ordinate will be higher, more
peaked, than would be expected on the basis of normal theory.

The compound events model can be interpreted conceptually by asserting that the price of a security
can be accounted for by aggregating a random number of price changes of random size: represented
as a Poisson distribution, which take place during the time interval observed, then superimposing
Brownian motion. For the Press (1967) model very large variances in the change in logarithmic price
levels will be obtained if many changes take place during the interval of interest. The distribution
associated with this model is leptokurtic: higher peaks and fatter-tails than a normal distribution
with the same mean and variance.

The basic, single security, Press (1967) compound events model involves a Poisson process with
Gaussian jump sizes stated as

Z(t) ≡ lnS(t) = lnS(0) +

N(t)∑
k=1

Yk +X(t) t = 1, 2, . . . , (4.46)

where:

• S(t) is the price of a given security at time t and Z(t) denotes the natural logarithm of the price
of a given security at time (t), assumed to be stationary independent increments composed
of a compound Poisson process: the jumps arrive randomly according to a Poisson process
and the random size of the jumps is specified by a probability distribution, augmented by a
Wiener process and S(0) is assumed known.

• Y1, Y2, . . . , Yk is a sequence of mutually independent random variables drawn from a normal
distribution with mean θce and variance σ2

2, obeying ∼ N(θce, σ
2
2).

• N(t) is a Poisson process with parameter λt, which represents the number of random price
changing events occurring in time t where {N(t), t ≥ 0} is independent of Yk and {X(t), t ≥ 0}
is a Wiener process independent of N(t) and of Y1, Y2, . . . , Yk.
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• X(t) ∼ N(0, σ2
1t) has stationary and independent increments drawn from a normal distribution

with mean 0 and variance σ2
1t.

By differencing Equation (4.46) gives

∆Z(t) ≡ Z(t)− Z(0) =

N(t)∑
k=N(t−1)+1

Yk + ε(t) t = 1, 2, . . . , (4.47)

where ε(t) = X(t) − X(0) is the stationary independent normal process, ∼ N(0, σ2
1). This model

resembles random walk models in that it is a discrete parameter, continuous state space, Markov
process and X(t) is a Brownian motion. The uniqueness of the Press (1967) model is that the
compound Poisson process:

∑N(t)
1 Yk, produces a non-Gaussian Z(t) process, and for λ = ∞, Z(t)

must follow some stable law.

Summarising the properties of the distribution characteristics of Z(t) and ∆Z(t), see below, Press
(1967) noted that they seem to be in agreement with the empirically determined properties of
security price changes and stated in the lemmas contained in Appendix D: Lemmas - Compound
Events Model on page 159.

Let φ∗(u) denote the characteristic function denoting the probability distribution of the one-step
price change ∆Z(t) as defined in Equation (4.47). For very small λ, φ∗(u) is normally distributed.
For large λ, the higher order terms in u produce a substantial departure from normality. The mean
and variance for Z(t) and ∆Z(t) are

E [Z(t)] = Z(0) + θceλt ,

V ar [Z(t)] = [σ2
1 + λ(θ2

ce + σ2
2)]t and

E [∆Z(t)] = θceλ ,

V ar [∆Z(t)] = σ2
1 + λ(θ2

ce + σ2
2) ,

(4.48)

where Z(t) is a process of stationary and independent increments and V ar [∆Z(t)] is a linearly
increasing function of λ. Therefore the variance of the relative logarithmic prices tends to grow as
the mean number of price-changing events increases.

The distribution of ∆Z(t) is leptokurtic and when the mean θce is small, the probability in the
extreme tails of the distribution of ∆Z(t) exceeds that of a comparably normally distributed random
variable. From Lemma (3) on page 159, the first four cumulants of the distribution of ∆Z(t) are
given as K1,K2,K3 and K4, where K4 is positive, which is what is needed for leptokurtosis.

The distribution of ∆Z(t) is more peaked in the vicinity of its mean than a comparable normal
random variable. The density function in the vicinity of the mean of the distribution of ∆Z(t) is
greater than the density of a standard normal variable.
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The distribution of ∆Z(t) is symmetric about its mean if its mean is zero; otherwise, the distribution
is asymmetric. The skewness, γ1, of the distribution of ∆Z(t) is obtained where the skewness has
the same sign as that of the mean θce. Moreover, γ1 = 0 if and only if the mean θce = 0, that is, if
and only if E[∆Z(t)] = 0.

When the mean |θce| is small, the probability in the extreme tails of the distribution of ∆Z(t) exceeds
that of a comparable normally distributed variable. The implications are that the density of ∆Z(t)

exceeds that of a standardised normal random variable as long as the densities are compared for all
points beyond some point chosen sufficiently far out in the tails of the distributions.

Press (1967) extended the basic security model to incorporate a multivariate statistical model to
study the joint behaviour of a group of securities. Examinations of the joint behaviour of many
securities found that securities tend to move in groups: King (1966). Press (1967) incorporated
these findings in defining the multivariate model given as

Z(t) = C +X(t) +H(t) +

M(t)∑
k=1

Wk , (4.49)

where C,X,H and Wk are p−variate vectors with:

Z(t) = [Z1(t), . . . , Zp(t)] ,

X(t) = [X1(t), . . . , Xp(t)] ,

Wk = [Wk1, . . . ,Wkp] ,

H(t) =

N1(t)∑
k=1

Yk1, . . . ,

Np(t)∑
k=1

Ykp

 ,
C = [Z1(0), . . . , Zp(0)] ≡ [C1, . . . , Cp] ,

(4.50)

where:

• Zj(t) is a vector process of stationary and independent increments and denotes the natural
logarithm of the price of the jth security at time t.

• Xj(t) denotes the mutually independent Wiener process associated with the jth security,
j = 1, . . . , p and distributed as ∼ N(0, tσ2).

• C is the vector of initial prices.

• M(t) represents the number of price changing events that affect all securities from (0, t] and
M(t) is assumed to have a Poisson distribution with parameter λ̄t.
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• Wk is assumed to be mutually independent and independent of M(t), and to follow the
multivariate normal distribution ∼ N(µ,Σ) for every k.

• H(t) are assumed to be independent and contain mutually independent Poisson processes with
parameters λjt, j = 1, . . . , p which represents the number of price changing event in (0, t] that
affect each security.

• Ykj are distributed as ∼ N(θcej , σ
2
j ) and assumed to be mutually independent for all k and

all j = 1, . . . , p.

• X(t), H(t) and
∑M(t)

1 Wk are assumed to be mutually independent.

The logarithmic price of each security comprises of an initial price, a linear combination of price
changes correlated with the market as a whole and some random price fluctuations representative
of Brownian motion.

The single security model is obtained from the multivariate model by setting p = 1 and λ̄ = 0.

Press (1967) tested his compound events model graphically on the price change distributions of
several stocks as follows:

i. Computed and graphed the cumulative distribution function of actual stock price changes.

ii. Estimated the parameters of the model (θce, λ), and of the skewness γ1, the kurtosis γ2, the
first four moments (mk), and the first four cumulants (Kk).

iii. Plotted the estimated theoretical cumulative distribution function on the same graph as the
actual cumulative distribution function.

The compound events model of a Poisson distribution mixture of normal distributions satisfies the
requirements of Officer (1972) and Praetz (1972) to identify a class of distribution that give a
better approximation of stock returns. The Press (1967) model is more peaked with a greater mass
in its tails than a comparable normal distribution and with a finite variance. The Press (1967)
model is concerned with aggregating a random number of logarithmic price changes of a random
size occurring during an observed time interval rather than the information flow driving the price
changes. The univariate model can be disregarded because it does not incorporate the system
of attributes to explain the FX market. The multivariate model describes the joint behaviour of
logarithmic price changes of a group of securities and can be considered to model the FX triangle
prices operating as a group. However the application to the FX market is limited. The model does
not allow for the systemic information flow but rather accounts for changes occurring during an
observed time interval in describing the FX market.

The compound events models possesses the right properties, but must be extended and calibrated
with greater accuracy if it is to provide a workable model for FX option pricing. In contrast to
the stable Paretian distribution, the compound events model possess the theoretical advantage of
having a finite second moment, allowing the use of standard statistical theory. The models offer
some scope to model an aspect of the FX market but are not sufficient to cover all the attributes
required.
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The Discrete Mixture of Normal Distributions

Kon (1984) proposed a discrete mixture of normal distributions to explain the positive skewness and
kurtosis: a measure of the fat-tails for a probability distribution of a real-valued random variable,
in the distribution of daily rates of return for common stock and stock indices. Kon (1984) noted
that stationary tests on the parameter estimates, where the mean, variance and autocorrelation are
all constant over time, revealed significant differences in the mean and variance estimates that can
explain the observed skewness and kurtosis, respectively, of the daily return distribution.

Kon (1984) compared the discrete mixture of normal distribution models with the Praetz (1972)
t-distribution model and concluded that the discrete mixture of normal distribution model had
”substantially more descriptive validity”.

Kon (1984) was concerned with the description of stock returns. The form of the distribution
of the stock returns is a crucial element for mean-variance portfolio theory, capital asset pricing
models and contingent claims. The most convenient assumption for empirical models is that the
distribution of stock returns is multivariate normal with parameters that are stationary over time.
Given that the normal distribution is stable under addition, any portfolio of stocks will also be
normally distributed. The assumptions of normality; crucial to models of financial theory and the
BSM equation, and stationarity are fundamental to the econometric techniques of empirical research.

Evidence from Blattberg and Gonedes (1974) indicated that the distribution of monthly returns
conforms to normality and hence empirical work proceeded to use monthly data. Research to
isolate information sets or utilise the advantage of a large sample for statistical reliability in asset
pricing models requires the use of daily data.

Fama (1965) tested the normality of the daily returns of the Dow Jones Industrial stocks and found
more kurtosis: fatter-tails, than predicted from i.i.d. normal variates. Fama (1965) concluded that
the distribution of price changes conforms to a stable distribution with characteristic exponent
α < 2.

The empirical evidence on the distribution of daily stock returns rejects the stationary normal
distribution model: Fama (1965). Normality is crucial to models of financial theory whereas
stationarity is a convenient sampling assumption.

Changes in the financial decision variables results in the adjustments to the expected returns and
standard deviation parameters of the returns distribution. An alternative explanation for the
fat-tails observed in stock returns involves the model specification. Consider a generating process
of stock returns as a mixture of normals where the variance is a random variable.

Changing the specification of the normal distribution model, A. J. Boness, Chen, and Jatusipitak
(1974) found that with weekly return data the parameters of the price change process shifted before
and after a capital structure change. The series departed from normality more frequently than in
the periods of pre- or post- capital structure changes. Further, A. A. Christie (1982) found that the
standard deviation of stock returns is an increasing function of the leverage effect. Seasonal signals
also lead the parameter shifts. Beaver (1968) noted that seasonal announcements result in rate of
return observations with higher variance during the disclosure periods.

A. A. Christie (1982) formulated a discrete mixture of two normal distributions to model returns.
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The higher variance distribution represented the information event while the other distribution
is attributed to the non-information random variables. Ball and Torous (1983) derived a model
comprising a mixture of two normal distributions for daily returns. The model resulted from a
Bernoulli jump process: one scenario for failure and the other for success, to describe information
arrivals where the Bernoulli distribution: discrete distribution with only two discrete scenarios, is
used to set the occurrence (x = 1) or lack of occurrence (x = 0) to denote a jump in a stochastic
variable. However, the generating process of stock returns is further complicated by exogenous
macro information:

i. Firm-specific or market-wide.

ii. Institutional trading restrictions: price clustering, price discreteness and days of the week the
trade occurs.

The information generating process is more nuanced than the two model scenarios considered. The
process is drawn from a mixture of normal distributions. The actual number of normal distributions
is an empirical issue and may vary across stocks or even currencies.

Kon (1984) considered the validity of the discrete mixture of normal distributions process as a
statistical model for stock returns. Kon (1984) estimated the parameters: where differences in the
mean estimates explain the skewness and differences in the variance estimates explain the kurtosis,
of the respective models for mixtures of N = 1, 2, 3, 4 and 5 normal distributions. Taking a sample
of 30 Dow Jones Industrial stocks Kon (1984) found that the likelihood-ratio test of the models
specification indicated that 7 stocks can be described by a mixture of four normal distributions;
three models described 11 stocks and two normal distributions for the remaining 12 stocks.

Kon (1984) suggested that the distribution of stock returns was normal with parameter shifts among
a finite set of values. These parameter moves are due to time-ordered shifts associated with:

i. Capital structure changes.

ii. Acquisitions.

iii. Stock splits.

iv. Exogenous events.

And cyclical-shifts between sets of parameters due to:

v. The days of the week of the trades.

vi. Seasonal announcements.

vii. Earnings and dividends.

Kon (1984) assessed the potential impact of both types of shifts on the distribution by taking 4, 639

daily return observations from an 18 1
2 -year time-series from July 2, 1962, to December 31, 1980, on

64



CHAPTER 4. STOCHASTIC STOCK PRICE PROCESSES F. Josephidou

the 30 stocks in the Dow Jones Industrial Average, the Standard and Poor’s Composite (S&P), the
Center for Research in Security Prices (CRSP) valued weighted (VW) and the CRSP equal-weighted
(EW) indices partitioned by:

i. Year to account for time-ordered shifts.

ii. Days of the week to account for cyclical-ordered shifts.

iii. Year and days of the week to account for both effects.

To identify the parameters of the normal distribution Kon (1984) assumes each return observation
is drawn from one of N sets of parameter values. These parameters accommodate both the cyclical
and time-ordered structural shifts. The generalised discrete mixture of normal distribution model
views each return observation on a stock, rt, as being generated by one of the following N distinct
equations

rt = µ1 + U1t if t ∈ I1 ,

rt = µ2 + U2t if t ∈ I2 ,

...

rt = µN + UNt if t ∈ IN ,

(4.51)

where Ii i = 1, 2, . . . , N are the homogeneous information sets with Ti observations in each set, thus
N∑
i=1

Ti = T . The random variables Uit are independent and identically normally distributed with a

mean of zero and variance of σ2
i , 0 < σ2

i <∞, i = 1, 2, . . . , N .

Defining λdmi = Ti/T as the proportion of observations associated with information set Ii. Then,
for a given N , the parameter vector θdm = {µ1, µ2, . . . , µN , σ

2
1 , σ

2
2 , . . . , σ

2
N , λdm1, λdm2, . . . , λdmN−1} can

be estimated by maximising the likelihood function

l(θdm|r) =
T∏
t=1

[
N∑
i=1

λdmi p(rt|γ′i)

]
, (4.52)

where r = (r1, r2, . . . , rT )′, γ′i = (µi, σ
2
i ), and p(rt|γi) is a normal probability density function with

mean µi and variance σ2
i .

Given N , the maximum likelihood procedure estimates 3N − 1 parameters defining the model
specification.

Kon (1984) found that the entire sample period for all three indices exhibited significant skewness
and kurtosis (fat-tails) at the 1% level of significance. However partitioning the data into annual
sub-periods reduced the frequency of rejecting the stationary normal null hypothesis. Partitioning
by day of the week still rejected the null hypothesis, but with less significance than for the entire
sample period. Conversely partitioning the entire sample period by year and by day of the week
further reduced the frequency of rejecting the stationary normal null hypothesis.
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Kon (1984) concluded that the test of normality on the partition of the data by year and by
day of the week was an incentive for developing the discrete mixture of normal distributions
hypothesis. The mixture process accommodates both cyclical and time-ordered shifts in the two
parameters of the normal distribution. Therefore a model intended to represent the mixture process
must accommodate cyclical shifts in parameter values due to the days of the week or seasonal
announcements and the structural time-ordered shifts associated with capital changes, stock splits
or exogenous market events.

The Kon (1984) formulation of a discrete mixture of normal distributions to model returns satisfies
the criterion outlined by Officer (1972) and Praetz (1972): a class of fat-tailed distributions with a
finite variance will give a better approximation of stock returns. Further each return is drawn from
a set of parameter values containing homogeneous information sets with numerous observations.
This can be adapted and applied to the FX market attributes: order flow, bid-ask spread and
triangulation, making up a system of information sets for each return. Thus applying the Kon
(1984) discrete mixture of normal distributions model for stock returns to the foreign exchange
market may offer an explanation of the market behaviour.

4.2.4 Conclusions

This chapter reviewed the models that offer an alternative to the normal distribution for the stock
price returns. The models have been critiqued in light of the elements that describe the foreign
exchange (FX) spot price: order flow, bid-ask spread and triangulation, to determine which model
incorporates these attributes to explain the FX market.

This chapter considered the Kon (1984) discrete mixture of normal distributions and the Press (1967)
compound events model as possible alternatives in specifying an improved stochastic process for
the price changes. The discrete mixture of normal distributions model seemed the most promising.
The distributions of the information events align themselves with the order flow, bid-ask spread and
triangulation from the FX market. That is the model can incorporate the systemic elements of the
FX spot market. Further, the Kon (1984) discrete mixture of normal distributions can be adapted
to the Black and Scholes (1972) methodology in deriving an alternative FX option pricing model.

Of the remaining models, the Press (1967) compound event model has proven to be a reliable
alternative to the Kon (1984) option but must be calibrated at a greater accuracy if it is to provide
a workable solution. The Madan and Seneta (1990) variance gamma model specifies a stochastic
process for the stock price volatility and is empirically consistent with stock returns where long
tails for daily returns are present. The Mandelbrot (1963) stable Paretian distribution converges
to a Gaussian behaviour over large time scales under the model’s claim to represent price changes.
However the model’s infinite variance is at odds with Officer (1972) and Praetz (1972) and can be
eliminated as a potential model of the FX market.

When adapting a model of stock price returns to explain the foreign exchange market, the criterion
the model must comply with include the following characteristics:

i. Fat-tails and peaked relative to the normal distribution of the same mean and variance.

ii. Slow convergence to Gaussian behaviour of logarithmic returns.
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iii. Non-constant mean and variance over time.

An eligible model incorporating these requirements can then be evaluated in light of the systemic
attributes of the FX market: order flow, bid-ask spread and triangulation. The question to ask is
whether the model can be applied to a system and not simply a linear solution?

The Kon (1984) model meets the systemic requirements of the FX spot market and is suitable for
further investigation as a potential representation of a normally distributed FX market model.
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Chapter 5

Stochastic FX Price Processes

The critical factor in the Black and Scholes (1973) and R. C. Merton (1973) (BSM) analysis was the
precise description of the stochastic process governing the price behaviour of the underlying asset.
Relaxing the price process assumption that stock prices follow a geometric Brownian motion, the
stochastic process for foreign exchange, based on the stochastic models for stock price returns, will
be respecified. The foreign exchange price process will then be applied to the BSM methodology to
arrive at an appropriate differential equation.

Under the price process assumption of Officer (1972) and Praetz (1972) that a class of fat-tailed
distributions with a finite second moment will give a better approximation of stock returns, the
stochastic stock model applied to foreign exchange is conditioned on the transformation incorporating
the systemic attributes of the foreign exchange (FX) market: order flow, bid-ask spread and
triangulation.

The Kon (1984) discrete mixture of normal distributions model satisfied these requirements and
will be adapted for the FX market to determine its appropriateness.

The remainder of this chapter is organised as follows. Section 5.1 discusses the parameter definitions
and model specification of the discrete mixture of normal distributions. Section 5.2 discusses the
data set and empirical methodology. Section 5.3 presents the results and 5.4 the conclusions.

5.1 Respecifying the Distribution of Foreign Exchange

5.1.1 The Discrete Mixture of Normal Distributions

This chapter examines the model proposed by Kon (1984) to explain the observed fat-tails and
significant positive skewness in the distribution of daily rates of return: the discrete mixture of
normal distributions. Stationarity tests on the parameter estimates of this model revealed significant
differences in the mean and variance estimates that can explain the observed skewness and kurtosis:
fat-tails, respectively.
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5.1.2 Parameter Definition and Model Specification

The generalised discrete mixture of normal distribution model views each return observation on a
stock, rt, as being generated by one of N distinct equations; see Equation (4.51) on page 65.

Given the T observations on the stock return variable, rt, there exists a permutation of the rows
of r = (r1, r2, . . . , rT )′ which will be partitioned according to Equation (4.51). In the presence of
a multinomial prior: the number of distinct permutations of a multiset of n elements before some
evidence is taken into account, the equation associated with the information set Ii is selected for
generating observations with probability λdmi, i = 1, 2, . . . , N . Thus each observation is viewed as
being drawn from a mixture distribution: the probability distribution of a random variable derived
from a collection of other random variables. The conditional probability density function (p.d.f.):
the value of any point in the sample space can be interpreted as providing a relative likelihood that
the value of a random variable would equal that point, of rt given the parameter vector θdm is given
by

ft(rt|θdm) =
N∑
i=1

λdmip(rt|γ′i) , (5.1)

where:

• γ′i = (µi, σ
2
i ), i = 1, 2, . . . , N , and

• θdm = {µ1, µ2, . . . , µN , σ
2
1 , σ

2
2 , . . . , σ

2
N , λdm1, λdm2, . . . , λdmN−1} is the parameter vector to be

estimated subject to the sample space Ω

• Ω = {θdm;−∞ < µi <∞, 0 < σ2
i <∞, i = 1, 2, . . . , N, 0 < λdmi < 1, i = 1, 2, . . . , N − 1} and

• p(rt|γ′i) is a normal probability density function with mean µi and variance σ2
i , i = 1, 2, . . . , N

and

•
∑N
i=1 λdmi = 1; σ2

1 < σ2
2 < · · · < σ2

N ; and Ti ≥ 2, i = 1, 2, . . . , N .

The parameter vector θdm is estimated by choosing values that maximise the likelihood function

l(θdm|rt) =

T∏
t=1

[
N∑
i=1

λdmip(rt|γ′i)

]
. (5.2)

The generality of the likelihood function in Equation (5.2) can be seen when comparing it to the
true likelihood function given by

l(θdm|rt) =

T1∏
t=1

p(rt|γ∗1) ·
T2∏
t=1

p(rt|γ∗2) · · ·
TN∏
t=1

p(rt|γ∗N ) . (5.3)

Under the assumption that the parameters and the partition of the T observations into Ti, i =

1, 2, . . . , N is known a priori, then no proportionalities are necessary: that they are multiplicatively
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connected to a constant. However, information about the partition is not known a priori and hence
the true likelihood function, Equation (5.3), cannot be applied directly. To achieve the required
result the right hand side of the general likelihood function, Equations (5.2), can be expanded to
obtain

l(θdm|rt) =

T∑
T1=0

T∑
T2=0

· · ·
T∑

TN=0

T !

T1! . . . TN !
λdm

T1
1 λdm

T2
2 , · · · , λdmTNN h(T1,T2,...,Tn)(γ

′
1, γ
′
2, . . . , γ

′
N ) , (5.4)

where (T1 + T2 + · · ·+ TN = T ) and

h(T1,T2,...,Tn)(γ
′
1, γ2, . . . , γN ) =

T1∏
t=0

p(rt)|γ′1) ·
T2∏
t=0

p(rt|γ′2) · · ·
TN∏
t=0

p(rt|γ′N ) . (5.5)

The summation in Equation (5.4) is over all feasible values of T1, T2, . . . , TN . Given each set of
feasible values the summation is therefore over all possible ways of partitioning the r vector into
the vectors r(ti), i = 1, 2, . . . , N with Ti, i = 1, 2, . . . , N observations in each vector. Therefore, any
scenario that generates data from N normal probability distributions in any order is included as a
subset of the general specification of Equations (5.2).

For a given N and T , the maximum likelihood estimator θdmT of θdm is defined by the supremum:
the least element that is greater than or equal to all elements of the set, of the logarithmic likelihood
given by

LT (θdm) =
T∑
t=1

ln ft(rt|θdm) . (5.6)

Then the maximum likelihood estimator θdmT is the solution to the likelihood equations

∂LT (θdm)

∂θdm
=

T∑
t=1

1

ft(rt|θdm)
· ∂ft(rt|θdm)

∂θdm
= 0 , (5.7)

such that the matrix of second partials evaluated at the solution point is negative definite in which
all eigenvalues are negative. The elements ∂LT (θdm)/∂θdm in Equation (5.7) are nonlinear in θdm so
that no closed form solution for θdmT exists. However Equation (5.7) represents an implicit solution
for the θdmT . Therefore employing the iterative gradient method identifies the local maxima in
finding the solutions satisfying the maximum maximorum.

Hypothesis tests on the elements of the estimated parameter vector, θdmT , can be constructed with
the information in the sample covariance matrix. For maximum likelihood estimates, the sample
covariance matrix is the negative inverse of the matrix of the second partial derivatives of the
logarithmic likelihood function with respect to the parameter vector evaluated at θdm = θdmT .
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Maximisation by Quadratic Hill-Climbing Iterative Gradient Method

Goldfeld, Quandt, and Trotter (1966) proposed a new gradient method for maximising general
functions. The new algorithm maximises a quadratic approximation to the function on a suitably
chosen spherical region. The method requires no assumptions about the concavity of the function
and automatically modifies the step size.

A variety of problems reduce to maximising or minimising functions of several variables. This type
of problem is dependent on the computation of the maximum likelihood estimates of the coefficients
which requires maximising the likelihood function or its logarithm.

Maximisation techniques take the form of iterative processes; given a point corresponding to a set
of values for the independent variable, a new point at which the function is larger is computed.
Repetition of the process leads to a point which converges to the location of the maximum.
Convergence requires the assumption that the function is concave in the region of the computed
points. Convergence can be guaranteed provided the initial value is sufficiently close to the maximum.
In the absence of a priori knowledge of the function there is no way to ensure the starting point
will satisfy such conditions. The Goldfeld et al. (1966) proposed method is designed to work for
functions which are not concave everywhere and for starting points which may not be near the
maximum.

Consider a function H(x1, . . . , xn), denoted by H(x), of n variables to be maximised. Let x denote
the column vector of variables (x1, . . . , xn), Fx the first partial derivatives evaluated at x and the
symmetric matrix Sx express the second partial derivative evaluated at x. To maximise H(x) requires
choosing a starting point xo = (xo1, . . . , x

o
n) and iterating according to

xp+1 = xp + hpDp , (5.8)

where hp is a positive constant and Dp is an n-dimensional direction vector. In gradient methods
the choice of Dp is given by

Dp = B−1Fxp , (5.9)

where B is a positive definite weighting matrix: a symmetric matrix where every eigenvalue is
positive and Fxp is the gradient of F evaluated at xp.

A simple choice for B is given by setting B = I where I is the identity matrix: an n × n square
matrix with ones on the main diagonal and zeros elsewhere. This choice of B derives the method of
steepest ascent. The rational behind this value of B, and hence of Dp, is that the gradient points
in the direction of the maximum increase of the best local linear approximations to H(x).

Assume that H(x) recognises a second-order Taylor series expansion around a point a = (a1, . . . , an)

such that

H(x) ≈ H(a) + (x− a)′Fa +
1

2
(x− a)′Sa(x− a) , (5.10)
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where the subscripts indicate the point of evaluation. Equation (5.10) corresponds to a first-order
expansion for the first partials obtained by differentiating with respect to x, that is

Fx ≈ Fa + Sa(x− a) . (5.11)

The method of steepest ascent implies

xp+1 = xp + hpFxp , (5.12)

substituting Equation (5.12) into (5.10), replacing a by xp and omitting the subscripts, gives

H(xp+1)−H(xp) = hpF ′ F +
1

2
(hp)2(F ′ SF ) . (5.13)

Choosing hp so as to maximise Equation (5.13) yields the ”optimum” gradient method. Treating
Equation (5.13) as a functions of hp, say G(hp), gives

dG

dhp
= F ′ F + hp(F ′ SF ) = 0

or

hp = −(F ′ SF )−1F ′ F .

(5.14)

In order that this value of hp yields a maximum then

d2G

d(hp)2
= F ′ SF < 0 , (5.15)

which is necessarily so if S is negative definite: in which all eigenvalues are negative. If xp is not
sufficiently close to the maximum to assure that Sxp is negative definite, this procedure may fail.

In practice the ”optimum” gradient choice of hp has not worked well and alternatives have been
used.

The difficulties associated with the steepest ascent method leads to the second most common version
of the gradient method: Newton’s method. This method is obtained by maximising Equation (5.10)
with respect to x. Setting xp = a and Equation (5.11) to zero, gives the iterative scheme

xp+1 = xp − S−1
xp Fxp . (5.16)

This is a gradient method with hp ≡ 1 and B = −S−1
xp . Equation (5.16) might require taking a

step so large that the quadratic approximation based on the behaviour of the function Xp: Sxp and
Fxp , has no validity at xp+1. In addition Sxp may be negative definite and hence does not have a
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maximum. While attempts have been made to solve the problem of non-negative definiteness of S,
no satisfactory solution has been proposed.

Goldfeld et al. (1966) proposed a new method which uses the same quadratic approximations but
includes a parameter which limits the size of the step taken.

Consider the quadratic function Q(x) where the matrix S is constant and the expansions in Equations
(5.10) and (5.11) are exact. If S is non-singular: one that has a matrix inverse, then from Equation
(5.11)

c = a− S−1 Fa , (5.17)

where c is a unique point where Fx = 0. If S is negative definite, Q has a unique global maximum
at c. If S is non-singular, Q is not bounded above.

Let ‖x‖ denote the length of the vector x, defined as (x′ x)
1
2 . Thus ‖x − y‖ is the distance between

x and y.

Goldfeld et al. (1966) determined the properties of the iterative process stated in the following
lemmas.

Lemma 1 : Let α be any number such that S − αI is negative definite, and define

bα = a− (S − αI)−1 Fa (5.18)

and
rα = ‖bα − a‖ . (5.19)

Then Q(bα) ≥ Q(x) for all x such that ‖x− a‖ = rα.

Lemma 2 : If Fa 6= 0 then rα defined by Equations (5.18) and (5.19) is a strictly decreasing function
of α on the interval (λ1,∞) where λ1 is the maximum eigenvalue of S.

Let α, bα and rα be as in Equations (5.18) and (5.19). Let Bα be the region consisting of all x such
that ‖x− a‖ ≤ rα, and suppose Fa 6= 0. Then the maximum value of Q(x) on Bα is attained at bα if
α ≥ 0, and is attained at b0 if α < 0.

If S is negative definite, Q has an absolute maximum at bα. Since λ1 < 0, both 0 and α are in the
interval (λ1,∞) and by ‖b0 − a‖ ≤ ‖bα − a‖ if and only if α < 0. Thus if α < 0, b0 is in the interior of
Bα and the maximum of Q on Bα occurs at b0. However if α ≥ 0, b0 is not in the interior of region
Bα and there is no local maximum of Q in the interior. Hence when S is not negative definite the
maximum on Bα must occur at bα.

Lemma 3 : If Fa = 0, then the maximum value of Q on the region Br, consisting of all x with
‖x − a‖ ≤ r occurs at a ± ru1 if λ1 is positive and at a otherwise, where u1 is a unit eigenvector
associated with λ1.

The Goldfeld et al. (1966) iterative procedure for finding the maximum given point xp at which Sxp

and Fxp are evaluated defines the next point, xp+1, as the maximum of the quadratic approximation,
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see Equation (5.10), on a spherical region centred at xp. Ideally the region should be as large as
possible provided that in the region the quadratic approximation is a satisfactory guide to the actual
behaviour of the function. In approximating this ideal, two distinct cases arise:

i. Fxp significantly different from 0.

In this event choose a number

α = λ1 +R‖Fxp‖ , (5.20)

where λ1 is the largest eigenvalues of Sxp , and R is a positive parameter to be described below. Now
take

xp+1 = xp − (Sxp − αI)−1 Fxp

or

xp+1 = xp − S−1
xp Fxp ,

(5.21)

according to whether α is positive or not. xp+1 is the maximum of the quadratic approximation to
the function on a region Bα of radius ‖(Sxp − αI)−1 Fxp‖ with centre at xp. The larger the value of
α the larger the value of R and the smaller the size of the region Bα. Hence the radius of Bα is

‖(Sxp − αI)−1 F‖ ≤ (‖Fxp‖R)−1‖Fxp‖ = R−1 , (5.22)

it is reasonable to expect the two quantities, ‖(Sxp − αI)−1 Fxp‖ and R−1, will in general be of the
same order of magnitude. In practice an initial value of R which appears reasonable is given to
the algorithm and then R is automatically modified at each iteration. Given the value of α one
computes a new iteration and accepts the step if the actual change in the function is positive. If
the function deteriorates, R is increased so as to take smaller steps which are repeated until an
improvement is obtained.

ii. Fxp is so near 0 that the length of the step taken is within a pre-set tolerance of 0.

If Sxp is negative definite, the process is terminated and xp is accepted as the location of the
maximum. If Sxp is not negative definite, this is either a saddle-point or at the bottom of the
maximum then Lemma 3 applies. A step is taken along the eigenvector corresponding to λ1 and
the algorithm recycles in the usual manner.

One final feature was the introduction of a scalar hp into Equation (5.21) as

xp+1 = xp − hp(Sxp − αI)−1Fxp . (5.23)
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At each step the computation is first performed with hp = 1. If this gives an improvement in H(x),

hp is multiplied by a constant and the function is examined at the new point obtained. This process
is repeated until the function declines in which case the last step is accepted.

5.1.3 Model Specification Tests

For each stock, five model specifications were considered for N = 1, 2, 3, 4 and 5. For each N

the logarithmic likelihood for the normal mixture was maximised by the Goldfeld et al. (1966)
modified quadratic hill-climbing algorithm, see Section 5.1.2. A comparison of the stationary normal
distribution with a mixture of two normals, N = 2, can be made with the pairwise test between
different specifications using the generalised likelihood-ratio

LR = −2 ln Λij = −2 ln

[
l(θdmi|r)
l(θdmj |r)

]
where i < j , (5.24)

where the quantity inside the square brackets is the likelihood-ratio. As all likelihoods are positive,
and as the constrained maximum cannot exceed the unconstrained maximum the likelihood-ratio
is bounded between zero and one. The smaller the likelihood-ratio the larger the χ2 will be. The
null hypothesis is rejected if χ2 is larger than a χ2-percentile with 3 degrees of freedom. The
likelihood-ratio test can also be expressed as the difference between the logarithmic likelihoods as

LR = −2 ln Λij = −2
[
ln l(θdmi|r)− ln l(θdmj |r)

]
where i < j . (5.25)

Multiplying by −2 ensures mathematically that LR converges asymptotically to being χ2-distributed
if the null hypothesis is true.

For example, the likelihood-ratio test for the stationary normal model against the alternative
hypothesis of a mixture of two normal distributions is Λ12 = l(θ1|r)/l(θ2|r). The significance tests
for discriminating between these hypotheses can be constructed from noting that the asymptotic
distribution of −2 ln Λij is a χ2 with degrees of freedom equal to the difference in the number of
parameters between the two models: 2 parameters for the general normal distribution: mean and
variance, and 5 parameters for the mixture of two normal distributions: two means, two variances
and the mixing parameter, giving the 3 degrees of freedom. The stationary normal distribution null
hypothesis is rejected in favour of the mixture of two normals at the 5% probability level when the
test statistic exceeds 7.815.

5.2 Data Set and Methodology

The Refinitiv Eikon trading system, formerly Thomson-Reuters, provided the data for this study.
The data set covers the 10 year period from February 19th, 2010, to February 19th, 2020. The data
consists of 2,609 observations for each of the top four currencies by percentage share of average daily
turnover as per the April 2019 BIS survey; see Table 3.3 on page 31. The related currency pairs
consists of EUR/USD, EUR/GBP, GBP/USD, USD/JPY, EUR/JPY and GBP/JPY, see Table 3.2 on page
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31. The exchange rate price history comprises the best bid, mid and ask quotes and time-stamped
to the daily closing price. No information as to the transaction size or trading parties is given.

Analysis of Skewness and Kurtosis

Given that the skewness and excess kurtosis of the normal distribution are zero, values for these
two parameters should be close to zero for data to follow a normal distribution.

The skewness test statistic utilised by Kon (1984) incorporates the third central moment divided
by the three-halves power of the second central moment. Furthermore the kurtosis coefficient is the
fourth central moment divided by the square of the second central moment. This implies that the
sample data can tell us something about the skewness and kurtosis of the population data. The
process outlined by Kon (1984) will not be followed here, rather the standard error of skewness and
kurtosis as a measure of the separation from zero as recommended by Cramer (2002) will be applied
and outlined in Appendix F: Statistical Analysis of Skewness and Kurtosis on page 189.

To test the null hypothesis that the distribution is normal the D’Agostino-Pearson omnibus test
will be applied. This test incorporates the test statistics for both skewness and kurtosis to come up
with a single p-value. The test statistic follows a χ2 distribution with 2 degrees of freedom: 5.9915

at the 5% level of significance, and given by

DP = Z2
Sk + Z2

Ku . (5.26)

Note that the D’Agostino-Pearson test has a tendency to err on the side of rejecting normality,
particularly with small sample sizes of below twenty.

5.3 Results

The statistical test for normality for the entire sample period is reported in Table 5.1. For brevity
the statistics for the sub-partitioned data are not disclosed here but are available in Appendix E:
Test for Departure from Normality on page 161.
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TABLE 5.1: Currency Pairs - Entire Sample Period Test for Departure from Normality

Exch. Rate Mean Std. Dev. Skewness Sak ZbSk Kurtosis Kc
u ZdKu DP e p-valuef Nbr. of Obs.

EUR/GBP 0.0000 0.0051 0.6005 12.5274 8.1741 85.2909 7431.4769 0.0000 2608
EUR/USD −0.0001 0.0055 −0.0286 −0.5970 1.9594 20.4449 418.3517 0.0000 2608
GBP/USD −0.0001 0.0055 −1.3535 −28.2349 21.9361 228.8878 53 186.8389 0.0000 2608
USD/JPY 0.0001 0.0056 −0.1463 −3.0522 5.1745 53.9919 2924.4390 0.0000 2608
EUR/JPY 0.0000 0.0067 −0.3755 −7.8322 6.1295 63.9576 4151.9140 0.0000 2608
GBP/JPY 0.0000 0.0074 −1.8470 −38.5297 32.2177 336.1693 114 494.3049 0.0000 2608
a Skewness statistic is the third central moment divided by the three-halves power of the second central moment multiplied by the sample skewness coefficient.
b The skewness test statistic is the sample skewness divided by the standard error of skewness. The 5% confidence interval for skewness is sample skewness
± 1.96 times the standard error of skewness. c The kurtosis coefficient is the fourth central moment divided by the square of the second central moment
multiplied by the sample kurtosis coefficient. d The kurtosis test statistic is the sample kurtosis divided by the standard error of kurtosis. The 5% confidence
interval for kurtosis is sample kurtosis ± 1.96 times the standard error of kurtosis. e The D’Agostino-Pearson test statistic with χ2 2df. f The p-value at the
5% level of significance.

Kon (1984) noted that stocks exhibited significant skewness and kurtosis at the 1% probability level
for the entire sample period, foreign exchange seems to be equally unequivocal.

The statistics presented in Table 5.1 assume the returns for each currency pair are independent and
identically distributed.

TABLE 5.2: Currency Pairs - Results: Test for Departure from Normality

Exch. Rate Skewness Sak ZbSk Kurtosis Kc
u ZdKu Normality

EUR/GBP Moderately Skewed Positive Leptokurtic Leptokurtic Reject
EUR/USD Approx. Symmetric Inconclusive Leptokurtic Leptokurtic Reject
GBP/USD Highly Skewed Negative Leptokurtic Leptokurtic Reject
USD/JPY Approx. Symmetric Negative Leptokurtic Leptokurtic Reject
EUR/JPY Approx. Symmetric Negative Leptokurtic Leptokurtic Reject
GBP/JPY Highly Skewed Negative Leptokurtic Leptokurtic Reject
a Skewness statistic is the third central moment divided by the three-halves power of the second central moment multiplied

by the sample skewness coefficient. b The skewness test statistic is the sample skewness divided by the standard error of
skewness. The 5% confidence interval for skewness is sample skewness ± 1.96 times the standard error of skewness. c The
kurtosis coefficient is the fourth central moment divided by the square of the second central moment multiplied by the
sample kurtosis coefficient. d The kurtosis test statistic is the sample kurtosis divided by the standard error of kurtosis.
The 5% confidence interval for kurtosis is sample kurtosis ± 1.96 times the standard error of kurtosis.

From Tables 5.1 and 5.2 the observed sample skewness Sk suggests that GBP/USD and GBP/JPY

are highly negatively skewed, EUR/GBP is moderately positively skewed and EUR/USD, USD/JPY

and EUR/JPY are approximately symmetric. The skewness test statistic ZSk exhibits a probable
negative population skewness for all currency pairs with the exception of EUR/GBP which displays a
positive population skewness and EUR/USD which is inconclusive: possibly positively or negatively
skewed or not skewed, at the 5% level of significance. The excess kurtosis Ku for the entire sample
period for all currency pairs is leptokurtic: a higher peak at the mean and fatter-tails than a
normal distribution with the same mean and variance. The kurtosis test statistic ZKu suggests the
population kurtosis is also leptokurtic at the 5% level of significance, indicating fatter-tails than
the normal distribution. The D’Agostino-Pearson test rejects the null hypothesis assumption of
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normality for all the currency pairs.

Therefore the normality test concludes that for the sample period the population return for foreign
exchange exhibited significant skewness and kurtosis at the 5% probability level. The distribution
is negatively skewed with a higher, sharper central peak and longer, fatter-tails when compared to
a normal distribution with the same mean and variance. The results in Table 5.1 and 5.2 clearly
reject the stationary normal distribution hypothesis for each currency pair for the entire sample.
The discrete mixture of normal distributions may be able to explain these results.

Kon (1984) noted that partitioning the data reduced the frequency of rejecting the stationary
normality null hypothesis for stock. Partitioning lead to a reduction in the kurtosis test statistic
which is improved still further the greater the partitioning applied.

In order to determine if the skewness and kurtosis for foreign exchange gives a better indication of
the population normality of the foreign exchange returns, further partitioning was applied to the
sample data, see Appendix E on page 161. The function used to determine the standard errors
of skewness, ZSk, and kurtosis, ZKu, assumes the data is drawn from a normal distribution. This
suggests that if the statistics are more than 1.96 standard errors from the hypothesized values at
the 5% level of significance the value can be rejected. This is only relevant when the standard error
estimate and the sampling distribution are approximately normal. Evaluating the skewness and
kurtosis for each partitioned sub-period, the corresponding test statistic was applied to affect the
probable population skewness and kurtosis. Although there is no minimum size for the test, a note
of caution as the sample sizes get smaller through sub-partitioning, the test becomes more sensitive
to the assumption that the samples are drawn from populations with a normal distribution. The
data was partitioned into the following sub-periods:

i. Annual.

ii. Day of the week.

iii. Both year and day of the week.

For brevity the findings are displayed in Appendix E on page 161.

The findings show that partitioning the data by year the measure of skewness Sk identifies the
sample data as approximately symmetric. Conversely the population skewness test statistic ZSk is
inconclusive: the population being either symmetric or skewed in either direction at the 5% level of
significance. The excess kurtosis Ku for the yearly partitioned data is leptokurtic and the population
kurtosis test statistic ZKu suggests the population is also leptokurtic at the 5% level of significance.
The D’Agostino-Pearson test rejects the null hypothesis assumption of normality but less frequently
than the test for the entire sample period in Table 5.2.

Partitioning the data by day of the week the measure of skewness Sk identifies the sample data
as approximately symmetric. For the majority of the population the skewness test statistic ZSk is
inconclusive: the population being either symmetric or skewed in either direction with a minority
negatively skewed at the 5% level of significance. The excess kurtosis Ku is leptokurtic and the
test statistic ZKu suggests the population is also leptokurtic at the 5% level of significance. The
D’Agostino-Pearson test rejects the null hypothesis assumption of normality at the same frequency
as the entire sample shown in Table 5.2.
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Partitioning the data by year and day of the week the measure of skewness Sk identifies the sample
data as approximately symmetric. The population skewness test statistic ZSk is predominately
inconclusive: the population being either symmetric or skewed in either direction with only a
minority negatively skewed at the 5% level of significance. The excess kurtosis Ku for each partitioned
sub-period was leptokurtic for the majority and platykurtic for the minority of returns at the 5%

level of significance. The D’Agostino-Pearson test does not reject the null hypothesis assumption
of normality.

When evaluating the normality of the distribution Kon (1984) suggested partitioning the data
into annual sub-periods reduced the frequency of rejecting the stationary normal null hypothesis.
Applying the D’Agostino-Pearson normality test to the sub-periods concurred with these findings.
The partition by year still rejected the null hypothesis but with less significance than for the entire
period whereas partitioning by day of the week did not have an effect. Applying both partitions of
year and by day of the week lead to a reduction in the skewness ZSk and kurtosis ZKu test statistics
and the D’Agostino-Pearson test does not reject the null hypothesis assumption of normality.

Kon (1984) noted that the observed skewness may be explained by shifts in the mean parameter
in the time-series and the observed kurtosis: fat-tails, are consistent with shifts in the variance
parameter. The tests of normality on the data partitioned by year and day of the week provide a
strong motivation for pursuing the Kon (1984) discrete mixture of normal distributions to model
the foreign exchange returns.

For each currency pair six potential model specifications: N = 1, . . . , 6 will be considered. Given
N , the logarithmic likelihood of the normal was maximised by the modified quadratic hill-climbing
algorithm set out in Section 5.1.2 on page 71. A comparison of the stationary normal distribution
with a mixture of N normal distributions was made utilising the likelihood-ratio test given by
Equation (5.25) on page 75. This statistic has an asymptotically χ2 distribution with 3 degrees of
freedom: 7.815 at the 5% level of significance, equal to the difference in the number of parameters
between the models: the sum of the N means, N variances and N − 1 mixing parameters for each
model specification. In order to reject the stationary normal distribution null hypothesis in favour
of the mixture of N normal distributions at the 5% probability level, the test statistic must exceed
7.815.

To examine whether the parameters of the models are stable across the various sub-samples of the
data a multiple breakpoints test was used: a test for parameter instability and structural change
to the models N = 1, . . . , 6. For each N model the quadratic hill-climbing iterative gradient method
was applied to determine the logarithmic likelihood for that model, see Table 5.3.

TABLE 5.3: Currency Pairs - Model Specification Logarithmic Likelihood

Model N Param. EUR/GBP EUR/USD GBP/USD USD/JPY EUR/JPY GBP/JPY

N = 1 2 10 064.850 9868.453 9867.460 9808.375 9340.327 9098.510
N = 2 5 10 069.160 9870.985 9869.917 9813.950 9344.514 9102.603
N = 3 8 10 072.140 9876.949 9875.474 9818.645 9349.971 9108.539
N = 4 11 10 073.820 9879.212 9877.088 9822.064 9351.168 9110.928
N = 5 14 10 075.080 9881.264 9879.238 9824.187 9351.816 9111.977
N = 6 17 10 075.870 9882.191 9879.823 9825.557 9351.540 9112.047

EViews 11 Stability Diagnostics.
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For each currency pair the statistic −2 ln Λij is used to test the null hypothesis of N = i against the
mixture of N = j normal distributions, see Table 5.4.

TABLE 5.4: Currency Pairs - Model Specification Logarithmic Likelihood-Ratio Test

Λij EUR/GBP EUR/USD GBP/USD USD/JPY EUR/JPY GBP/JPY

Λ12 8.620 5.064 4.914 11.150 8.374 8.186
Λ23 5.960 11.928 11.114 9.390 10.914 11.872
Λ34 3.360 4.526 3.228 6.838 2.394 4.778
Λ45 2.520 4.104 4.300 4.246 1.296 2.098
Λ56 1.580 1.854 1.170 2.740 −0.552 0.140

χ2 three degrees of freedom 7.815 at 5% level of significance.
χ2 three degrees of freedom 11.345 at 1% level of significance.

The likelihood-ratio test, −2[ln Λ1 − ln Λ2], for the stationary normal null hypothesis, N = 1, against
the alternate hypothesis of a mixture of two normal distributions, N = 2, has in the main greater
values than the 7.815 at 3 degrees of freedom required to reject N = 1 in favour of N = 2 for
EUR/GBP, USD/JPY, EUR/JPY and GBP/JPY with only EUR/USD and GBP/USD not rejecting the null
hypothesis.

Further, of the four currency pairs that had rejected the null of N = 1 in favour of N = 2 at the 5%

level of significance, three currency pairs: USD/JPY, EUR/JPY and GBP/JPY rejected the two normal
distributions, N = 2, in favour of three normal distributions, N = 3 at the 5% level of significance.

The mixture of N = 4, 5 and 6 was attempted on the entire sample and no satisfactory optimum
was obtained for any of the currency pairs.

To verify whether the parameter shifts support the discrete mixture of normal distributions as a
model for foreign exchange returns the individual difference test for each parameter was undertaken.

TABLE 5.5: Currency Pairs - Parameter Differencing

Model N EUR/GBP EUR/USD GBP/USD
mean var. mean var. mean var.

N = 2 0.0000 0.0000 −0.0001 0.0000 −0.0001 0.0000
N = 3 0.0001 0.0001 −0.0002 0.0001 −0.0002 0.0001
N = 4 0.0005 0.0001 −0.0003 0.0001 −0.0004 0.0001

Model N USD/JPY EUR/JPY GBP/JPY
mean var. mean var. mean var.

N = 2 0.0001 0.0000 −0.0001 0.0001 −0.0001 0.0001
N = 3 0.0004 0.0001 −0.0001 0.0001 −0.0004 0.0001
N = 4 0.0003 0.0001 −0.0002 0.0001 0.0000 0.0002

All models reject the unit root null hypothesis at the 1% level of significance.

Note that transformations such as logarithms can help to stabilise the variance of a time series.
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Differencing a time series can help to stabilise the mean by removing changes in the level of a time
series and therefore eliminating trend and seasonality effects. The former was applied to the data
here. Kon (1984) noted that changes in the financial decision variables resulted in adjustments to
the mean and standard deviation parameters of the distribution of the return. The parameters shift
along a finite set of values to explain the skewness due to differences in the mean and the kurtosis
due to shifts in the variance parameter.

For each currency pair and model specification in Table 5.5 the unit root null hypothesis was rejected
at the 1% level of significance and the parameter estimates were differenced. The difference test of
the stationarity hypothesis for the mixture of two, three and four normal distributions models for
each currency pair are shown in Table 5.5. For EUR/GBP, which was identified with two normal
distributions, the mean and variance stationarity is rejected for N = 3 and 4. For EUR/USD and
GBP/USD, both identified with a single normal distribution, the mean stationarity is rejected for
N = 2, 3 and 4 and the variance stationarity for N = 2 and 4, for both models. For the models
identified by three normal distributions: (USD/JPY, EUR/JPY and GBP/JPY), USD/JPY rejects the
mean stationarity for N = 2, 3 and 4 and the variance stationarity for N = 3 and 4, EUR/JPY rejects
the mean and variance stationarity for N = 2, 3 and 4 and GBP/JPY rejects the mean stationarity
for N = 2 and 3 and the variance stationarity for N = 2, 3 and 4. This agrees with Table 5.2 to
explain the skewness, which varied from moderately positively skewed to approximately symmetric
to highly negatively skewed and the kurtosis which was consistently leptokurtic throughout for the
entire sample period.

The parameter stationarity test and model specification support the discrete mixture of normal
distributions as a model of foreign exchange returns. Concluding that at the 5% level of significance
the sample may be described by three normal distributions for USD/JPY, EUR/JPY and GBP/JPY

and two normal distributions for EUR/GBP with EUR/USD and GBP/USD described by one normal
distribution.

Note that the currency pairs involving the Japanese Yen are described by three normal distributions,
the Euro and British pound by two normal distributions and the US Dollar currency pairs by one.
The question arises of whether a significant exogenous event exists to account for such a pattern.
To explain these results the data is partitioned pre- and post- the Japan earthquake of 2011 and the
Brexit vote of 2016 and a Chow test applied to determine if more information can be derived from
the sub periods than the whole. The null hypothesis of no breaks at the specified break point was
not rejected and therefore concludes that more information cannot be derived from the sub periods
than from the whole period in entirety. The results are statistical as expected.

5.4 Conclusions

This chapter reviewed the stochastic price processes that represented the systemic constituents
of the foreign exchange market. Critiquing the systemic elements of the foreign exchange (FX)

spot price: order flow, bid-ask spread and triangulation, Kon (1984) proposed that the constituent
pricing factors are normally distributed but when operating as a system the resulting distribution
is leptokurtic and positively skewed. The discrete mixture of normal distributions advances an
explanation for the resulting distribution, attributed to the mean and variance shift parameters.
These parameters arise when the pricing elements are separated out into their normally distributed
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constituents and differenced. The resulting shift parameters can then be applied to transform the
leptokurtic, positivity skewed distribution to normal.

The most common assumption is that returns are multivariate normal with parameters that are
stationary over time. The assessment of the normality hypothesis on the foreign exchange daily
returns revealed that the D’Agostino-Pearson test rejected the null hypothesis of normality, further
the distributions are in fact negatively skewed and leptokurtic with fatter-tails than a normal
distribution with the same mean and variance attributed to a shift in the parameters over time.

A possible explanation for the observed skewness and kurtosis of the returns involves the model
specification in which the true generating process is a mixture of normal distributions. Partitioning
the data into sub-periods accounted for the shifts in the parameters, reducing the frequency the
stationary normal null hypothesis is rejected. The thesis estimated the N normal distributions
attributable to each currency pair to identify the optimal number of normal distributions to ensure
normality of the return distribution. At the 5% level of significance, the sample described the
USD/JPY, EUR/JPY and GBP/JPY by three normal distributions, two normal distributions for EUR/GBP

with EUR/USD and GBP/USD described by one normal distribution.

The parameter estimates and stationarity test for the mixture of one, two and three normal
distribution models for each of the currency pairs contained at least one mean parameter estimate
that was negative. This negative parameter is consistent with the Monday effect. Monday returns
usually exhibit higher variance than other days of the week while negative mean estimates are
associated with a lower variance than the variance of the distributions of positive mean estimates.
The inference that this thesis draws is that the true mixture of normal distributions is more complex
than a simple partition of the data by year and day of the week. Accepting this limitation, the
models identified demonstrate that the distribution of daily rates of return is comprised of the
composite distributions of the systemic elements that make up the foreign exchange market. The
Black and Scholes (1973) and R. C. Merton (1973) option pricing model is based on a single
normal distribution and a geometric Brownian motion process of the underlying asset’s price, where
normality is crucial to models of financial theory. The option pricing formula can be improved by
applying the shift parameter normal transform for the Kon (1984) mixture of N = 1, 2 or 3 normal
distributions that arise from the systemic elements that make up the FX option price.

82



Chapter 6

FX Option Pricing and Forecasting

The application of option pricing theory can be adapted to price options on processes suggested by
empirical literature. One such process is the discrete mixture of normal distributions model proposed
by Kon (1984). The model might be formulated as a stochastic process whose drift parameter and
volatility are time dependent and shift along a finite number of values to be determined from real
data. Once the process is specified the Black and Scholes (1973) argument could be adapted to
price the option. The alternative option pricing formula in this case would be the expected value
of the standard Black and Scholes (1973) formula conditioned on the distribution of the volatility
parameter where the values for variance σ2 would be drawn from a discrete set.

Geometric Brownian motion is the stock diffusion model on which the Black and Scholes (1973)
equation is based. While a very good first approximation for price changes, it can be improved
significantly. A critical factor in the original Black and Scholes (1973) analysis is the failure of stock
price returns to meet the precise description of the stochastic process governing the behaviour of
the underlying asset.

In an attempt to improve upon the original Black and Scholes (1973) and R. C. Merton (1973) (BSM)

equation, the assumption that the asset price follows a geometric Brownian motion will be relaxed.
Naturally, any price process suggested for replacing or modifying the geometric Brownian motion
must result in a formula that can be utilised by option traders to improve on the performance of the
embedded BSM equation. The Kon (1984) discrete mixture of normal distributions stochastic model
will be applied to formulate an alternate approach that is more aligned to the geometric Brownian
motion price process when applied to foreign exchange. An alternative FX option pricing model
will be derived from enabling the Black and Scholes (1973) and R. C. Merton (1973) methodology
pertaining to the Kon (1984) price process.

Risk reversals derived from the alternative FX option pricing model will be used to forecast the spot
market. This forecasting performance will be compared to the BSM market derived risk reversals.
The premise being that an improved model should afford improved forecasting abilities.
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6.1 Properties of Option Pricing Models

An American call option gives the owner the right to purchase a share of stock at a given exercise
price on or before a given date and is issued by an individual or financial institution. An American
put option gives its owner the right to sell a share of stock at a given exercise price on or before
a given date. A European option has the same terms as its American counterpart except that it
cannot be exercised before the last date of the contract. P. Samuelson (1965) demonstrated that
the two types of contracts may not have the same value since the contracts may differ with respect
to other provisions.

This paper will focus on European options.

6.1.1 Properties of the Call Option Price Formula

An insight into the properties of the Black and Scholes (1973) formula is gained by determining how
the model performs when the parameters take on extreme values and its adherence to the boundary
conditions: J. C. Hull (2012)

i. What happens when the stock price S becomes much larger than the strike price K: the option
becomes very similar to a forward contract with the probability the option will be exercised
tending towards unity.

As the stock price S −→ ∞ the cumulative probability distribution N(d1) −→ 1 and N(d2) −→ 1, so
that the call option price fc approaches the expected price S −Ke−rT .

ii. What happens when the volatility σ −→ 0: the stock tends towards being riskless.

This case expects the option to behave like a risk-free bond whose price grows at the risk-free rate
r. Thus at time T the call option payoff for the riskless stock is

max(SerT −K, 0) , (6.1)

thus the present discounted value of the call option becomes

e−rTmax(SerT −K, 0) = max(S −Ke−rT , 0) . (6.2)

To show that the Black and Scholes (1973) formula is consistent with Equation (6.2) consider the
case when S > Ke−rT . Rewriting this inequality as ln(S/K)+rT > 0, when σ −→ 0, d1 and d2 −→ +∞.
Thus N(d1) and N(d2) −→ 1 and giving fc = S −Ke−rT in the limit. Conversely when S < Ke−rT ,
then as σ −→ 0, d1 and d2 −→ −∞. Thus N(d1) and N(d2) −→ 0 which gives fc = 0 for the call option
price.
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iii. What happens when the volatility σ −→∞: in the limit the option price equals the stock price,
fc = S, thus the strike price K becomes irrelevant.

In the limit as σ −→ ∞, d1 −→ +∞ and d2 −→ −∞, thus N(d1) −→ 1 and N(d2) −→ 0. When the
stock price S is fundamentally uncertain the strike price K becomes unimportant: why purchase
and option to acquire the stock at the strike price K when you can buy it directly from the market
at the stock price S.

Therefore, even under extreme circumstances the Black and Scholes (1973) model adheres to the
option boundary conditions.

6.2 Literature Review

6.2.1 Option Valuation Theory

A central problem of modern finance is that of valuing the claims to assets. Modigliani and Miller
(1958) stated that at equilibrium, packages of financial claims which are in essence equivalent, must
command the same price. As a consequence the aggregate value of a claim is independent of the type
of claim issued. This argument can be applied to a specialised form of financial claim in evaluating
options. The seminal work in this area is the Black and Scholes (1973) option pricing model which
only depends on observable variables.

Cox and Ross (1976) presented an option valuation framework which illustrates the structure of
hedging arguments to obtain a valuation formula for vanilla options. This framework can be adapted
for the valuation of FX options, it is stated as:

i. Choose a particular stochastic process to govern the price moment of the FX market, spot price
S.

ii. Take an instrument whose value is dependent on S and assume a regular price function f(S, t)

exists.

iii. Assuming the price process and option function f(S, t) are well behaved, derive the differential
equation for the option value, df .

iv. Note that the drift and variance parameters of the option price df depend on the unknown
function f(S, t) and known values of S and t.

v. Assume short selling and the existence of a riskless asset that earns an instantaneous rate r.
Assume no arbitrage.

vi. For Poisson price processes assume the jump amplitude is a non-random function.

vii. Formulate a differential-difference equation for the option price.

viii. Use the terms of the option to set boundary conditions in solving the differential-difference
equation.
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The Cox and Ross (1976) framework requires that the random differential movement of S be written
as

dS = µ(S, t) dt+ σ(S, t) dx , (6.3)

where µ(S, t) and σ(S, t) are functions of the current state of the world, and that the option process
df is expressed as

df = µ(f, t) dt+ σ(f, t) dx . (6.4)

Cox and Ross (1976) use the existence of a hedged portfolio of the stock, S, and the option, f(S, t),
to define the relationship

αS σS (dxS/S) + αf σf (dxS/f) = 0 , (6.5)

where the dependence on the t is dropped for simplicity. This simplifies to

αS(σS/S) + αf (σf/f) = 0 , (6.6)

where αS and αf are the portfolio weights in the stock and option respectively. The hedged portfolio
is riskless and must have a rate of return of

αS(µS/S) + αf (µf/f) = (αS + αf )r . (6.7)

Separating out the risky and riskless components gives

αS

(
dS

S

)
+ αf

(
df

f

)
= (αS + αf )r , (6.8)

where the total return for the stock holding plus the total return from the option holding must equal
the risk-free return. From Equations (6.5) and (6.7) the fundamental option valuation equation gives

(µf − rf)

σf
=

(µS − rS)

σS
, (6.9)

where the risk premium divided by the scale of risk has to be the same for the stock and the option.
It can be argued that the uniqueness of the solution f(S, t) and the independence of the hedging
argument from any presumption about the risk preferences of the investor imply that the expected
return on the stock and the option can be set equal to the risk-free interest rate r.
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6.2.2 Rational Option Pricing Theory

Bachelier (1900) deduced an option pricing formula based on the assumption that stock prices follow
a Brownian motion with zero drift. In contributing to the theory R. C. Merton (1976) extrapolated
a set of restrictions necessary for an option pricing formula to be consistent with a rational pricing
theory based on the assumption that investors prefer more to less.

R. C. Merton (1976) noted that in perfect markets with no transaction costs and the ability to
borrow and short-sell without restriction, the existence of a dominated security: given securities A
and B, A dominates B if the return on security A exceeds the return on security B for some possible
states of the world, and will be at least as large as B in all possible states of the world, would
be equivalent to the existence of an arbitrage situation. However, it is possible to have dominated
securities exist without arbitrage in imperfect markets. If one assumes symmetric market rationality
and that investors prefer more wealth to less, then any investor willing to purchase security B would
prefer to purchase security A.

Assumption 1 : A necessary condition for a rational option pricing theory is that the option be
priced such that it is neither a dominant nor a dominated security

Let f(S, T ;K) denote the value of a call option with stock price S, time to maturity T , and exercise
price K. From the definition of a call option and limited liability, where

f(S, T ;K) ≥ 0 , (6.10)

then it follows from Assumption 1, that

f(S, T1;K) ≥ f(S, T2;K) if T1 > T2 . (6.11)

Further, if one option has a larger exercise price than the other, it must satisfy

f(S, T ;K1) ≤ f(S, T ;K2) if K1 > K2 . (6.12)

Because the common stock is equivalent to a perpetual (T = ∞) call option with a zero exercise
price (K = 0), it follows

S ≥ f(S, T ;K) . (6.13)

Let P (T ) be the price of a riskless discounted bond which pays one dollar T years from now. If
current and future interest rates are positive, then

1 = P (0) > P (T1) > P (T2) > ... > P (Tn) for 0 < T1 < T2 < · · · < Tn . (6.14)
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From Assumption 1 and Equation (6.10) it follows that if the exercise price of a European call is
K and if no dividend payments are made over the life of the option, then

f(S, T ;K) ≥ max[S −KP (T ), 0] , (6.15)

adhering to the boundary conditions of a call option. The boundary condition max[S − K, 0] is
referred to as the intrinsic value of the option. The option must always sell for at least its intrinsic
value. If the intrinsic value holds, then the value of an option with a large time to maturity (T =∞)

must equal the value of the common stock. Conversely, finite time to maturity option prices must
be a function of the price of a riskless discounted bond P (T ). If this were not the case then for some
sufficiently small P (T ) the intrinsic value conditions would be violated.

R. C. Merton (1973) argued that the use of interest rates was implied in the formula by using the
exercise price as a variable instead of the present value of the exercise price. An argument for the
reasonableness of this result comes from recognising that a European call option is equivalent to a
long position in the common stock leveraged by a limited-liability discount loan, where the borrower
promises to pay K dollars at the end of T periods. In the event of default the borrower is only liable
to the extent of the value of the common stock at that time. If the present value of such a loan is
a decreasing function of the interest rate, then for a given stock price, the option price will be an
increasing function of the interest rate.

R. C. Merton (1973) concluded that the rationally determined option price is a non-decreasing
function of the riskiness of its associated common stock. The more uncertain one is about the
outcomes on the common stock the more valuable is the option.

6.2.3 Alternative Option Diffusion Processes

Black and Scholes (1973) assumed the value of the stock follows a geometric Brownian motion
through time which produces a log-normal distribution for stock prices between any two points
in time. As a consequence a portfolio consisting of stock and any option written on it will be
perfectly correlated. Combining this portfolio with borrowing or lending at the risk-free rate a
position in one will be a perfect substitute for the other. In this way the option is covered by
riskless bonds and the stock. Thus if the value of the stock is known, then one can value the option.
The critical factor in this argument is the precise description of the stochastic process governing the
behaviour of the underlying asset. The characteristics of this process determine the exact nature of
the equivalence between packages of financial claims. In considering alternative forms of stochastic
processes governing stock prices Cox and Ross (1976) developed an approach to the option valuation
problem that connects it to the underlying stochastic process.

The basic assumption employed by Black and Scholes (1973) was that the stock value followed a
log-normal process

dS

S
= µdt+ σ dz , (6.16)

where S is the value of the stock with drift term µ, variance σ2 and Wiener process z. This is a
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short-hand notation for the stochastic process were St is the value of the stock at time t and the
percentage change in the value in the next instant from t to t+ dt is

dS

S
=
St+dt − St

St
. (6.17)

The percentage change is made up of two components, a drift term µdt which is certain when viewed
from time t and a normally distributed stochastic term σdz. The stochastic term is independent of
its values in previous periods and has a zero mean and variance σ2dt. The percentage change in
stock value from t to t + dt is normally distributed with mean µdt and variance σ2dt. At the limit
of dt, St+dt will not differ much from St. This is the fundamental diffusion process and represents a
random walk around a trend term in the short run and offers no surprises.

The original Black and Scholes (1973) approach yielded the differential equation of the form stated
in Equation (G.10) on page 197. When considering alternative diffusion processes look at the Linear
Price Variance and Constant Price Variance Processes. For the Linear Price Variance Process the
differential equation becomes

∂f

∂t
+ rS

∂f

∂S
+

1

2
σ2S

∂2f

∂S2
= rf . (6.18)

The density of the limiting diffusion for the birth and death process is known: Feller (1951), therefore
the risk-neutral method can be applied and the expectation of max(S(T )−K, 0) discounted to time
t can be taken to obtain the valuation formula

f(S, t) = S

∞∑
n=0

(n+ 1)e−yynG(n+ 2, θK)

Γ[n+ 2]
−Ke−r(T−t)

infty∑
n=0

e−yyn+1G(n+ 1, θK)

Γ[n+ 2]
, (6.19)

where

θ =
2r

σ2[er(T−t) − 1]
,

y = θSe(T−t) ,

G(m,x) = [Γ(m)]−1

∞∫
x

e−zzm−1 dz .

(6.20)

For the Constant Price Variance Process the differential equation now becomes

∂f

∂t
+ rS

∂f

∂S
+

1

2
σ2 ∂

2f

∂S2
= rf . (6.21)
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As with the previous process the density of the diffusion is known generating the following valuation
formula

f(S, t) =
(
S −Ke−r(T−t)

)
N(y1) +

(
S +Ke−r(T−t)

)
N(y2) + v[n(y1)− n(y2)] , (6.22)

where N(·) is the cumulative unit normal distribution function, n() is the unit normal density
function and

v = σ

√(
1− e−2r(T−t)

2r

)
,

y1 =
S −Ke−r(T−t)

v
,

y2 =
−S −Ke−r(T−t)

v
.

(6.23)

The diffusion process is only one of two general classes of continuous time stochastic processes. The
other type of stochastic process in continuous time is the jump process.

Resulting Jump Processes

A simple jump process can be written as

dS

S
= µdt+ (k − 1)dπ ,

dS

S
=


(k − 1), with probability λ dt ,

0 with probability 1− λ dt ,

(6.24)

where π is a continuous time Poisson process, λ is the intensity of the process and k− 1 is the jump
amplitude. Equation (6.24) is a shorthand notation for the stochastic process that governs the
percentage change in the value of the stock on the interval from t to t+ dt. This percentage change
is composed of a drift term µdt and a term dπ, which with a probability λdt will jump the percentage
stock change to the random amplitude k− 1 and with a probability of 1−λdt it will do nothing. An
interpretation of λdt is the instantaneous probability of receiving a packet of information that will
cause S to jump.

In contrast to the diffusion process, the jump process follows a deterministic movement upon which
is superimposed discrete jumps. Formally, a jump process has a discontinuous sample path with
probability one whereas the diffusion process has a continuous sample path with probability one.
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Because of the jumps in value the Black and Scholes (1973) analysis for valuing options does not
carry directly over to Equation (6.24).

For a stock whose return is given by

dS = µS dt+ dq , (6.25)

where dq are the increments of the pure jump process q, given by

dq =

{
(k − 1), with probability λ dt ,

0, with probability 1− λ dt ,
(6.26)

the option f(S, t) follows the dependent process

df =


f(S + k − 1, t)− f(S, t), with probability λS dt ,

∂f
∂t dt+ µ ∂f∂Sdt, with probability 1− λS dt

(6.27)

where λ is an arbitrary function. By constructing the fundamental option valuation equation for
this option process, Cox and Ross (1976) obtain the following difference-differential equation

µ
∂f

∂S
+

[
µ− rS
1− k

]
f(S + k − 1, t) +

[
r[k − 1 + S]− µ

1− k

]
f(S, t) +

∂f

∂t
= 0 , (6.28)

where µ and k are functions of S and t. Note that Equation (6.28) is independent of the jump
process intensity λ. When the hedge position depends only on the jump size then the intensity
plays no role in the valuation.

Merton’s Mixed Processes

R. C. Merton (1976) examined a jump process with a drift term, although there is no closed-form
solution the underlying stochastic process is stated in terms of the return dS/S rather than the price
increment dS. The return process used by R. C. Merton (1976) is

dS

S
= (µ− λk) dt+ σ dz + dq , (6.29)

where the pure jump process is given by

dq =

{
Y − 1, with probability λ dt ,

0, with probability 1− λ dt .
(6.30)

91



CHAPTER 6. FX OPTION PRICING AND FORECASTING F. Josephidou

Using this variation R. C. Merton (1976) arrived at the following difference-differential equation for
the option price f(S, t)

∂f

∂t
+ (r − λk)S

∂f

∂S
+

1

2
σ2S2 ∂2

∂S2
+ λε{f(SY, t)− f(S, t)} = rf , (6.31)

subject to the boundary conditions

f(0, t) = 0

and

f(S, T ) = max(S −K, 0) .

(6.32)

While a closed-form solution to Equation (6.31) cannot be written down without further specification,
a partial solution can be. Define W (S, t;K, r, σ2) to be the Black and Scholes (1973) option pricing
formula for the non-jump case in Equation (G.10). Define the random variable Xn to have the same
distribution as the product of n i.i.d. random variables, each identically distributed to the random
variable Y where X0 = 0. Define εn to be the expectation operator over the distribution of Xn.
Then the solution to Equation (6.31) when the current stock price is S can be written as

f(S, t) =
∞∑
n=0

e−λ(T−t)λn(T − t)n

n!

[
εn{W (SXne

−λk(T−t), t;K,σ2), r}
]
. (6.33)

6.2.4 Alternatives to the Black-Scholes Model

The Black and Scholes (1973) closed-form option pricing model is based on the assumption that
the price of the underlying asset S follows a log-normal process with an expected return µ and a
constant volatility σ

dS

S
= µdt+ σ dz , (6.34)

where S is the stock price and dS/S follows a geometric Brownian motion with expected rate of
return µ and variance σ2.

The drawback to this model is that it is based on the simplistic assumptions of constant volatility
and a normal distribution function for the underlying asset return. The limitations of the model are
evidenced by the discrepancies observed between market and theoretical prices. These discrepancies
are pronounced in the different implied volatilities according to the exercise price (smile and skew)
and maturities (term structure): Rubinstein (1994) and Dumas et al. (1998).

Alternatives to the Black and Scholes (1973) model were developed to account for the implied
volatility smiles and for the skewness and kurtosis in the distribution of the returns. These
alternatives are divided into three categories. The first consists of models with a jump diffusion
process: R. C. Merton (1976). The second category comprises of stochastic volatility models: J. Hull
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and White (1987), Stein and Stein (1991) and Heston (1993). The third category forms the local
volatility model developed: Dupire et al. (1994), Derman and Kani (1994) and Rubinstein (1994).

The following sections describe each of these categories, highlighting the benefits and limitations of
each.

Jump Diffusion Models

R. C. Merton (1976) introduced a jump component following a Poisson process to the Black and
Scholes (1973) diffusion process. The intuition that markets receive new information in a discrete
manner and this information causes them to adjust the underlying asset price accordingly. The
jump component is representative of actual market conditions by accounting for outliers and the
asymmetry of the return distribution. The diffusion process is given by

dS

S
= µdt+ σdz + dq , (6.35)

where dq is the jump component and follows a Poisson process. Ball et al. (1985), Das and Uppal
(2004) and Das (2002) tested the model after estimating values for its parameters and found the
jump component to be significant. The model benefits from being able to generate several different
volatility smile and skew shapes according to what is observed in the markets. For instance, using
a jump process with a negative average presents the sharp skew seen for short-term maturities. Das
and Foresi (1996), Bates (1996) and Bakshi et al. (1997) illustrated the importance of the jump
component for pricing very short-term options. Bakshi et al. (1997) compared several models and
noted that jumps are essential for modelling the asset diffusion process when pricing short-term
options even if using a stochastic volatility model. Bakshi et al. (1997) concluded that models with
jumps better account for the skewness and kurtosis in the distribution of returns. However models
with jumps are difficult to put into practice. Such models do not offer a simple equation to calculate
option prices.

Stochastic Volatility Models

Although the Black and Scholes (1973) formula is successful in explaining stock option prices, it
does have known biases: Rubinstein (1985). Its performance also is substantially worse on foreign
currency options: Melino and Turnbull (1990) and Melino and Turnbull (1991). Subsequent pricing
models aim to ease one or more of the BSM assumptions, see Section G.1.1 on page 194, with the
presumption of a constant volatility across strike prices and maturity being the most problematic.

In these models the underlying asset volatility is considered stochastic and its movements are
represented by a diffusion process. The diffusion process in stochastic volatility models is still
considered log-normal, see Equation (6.34), but in this case the volatility σ is not constant. The
volatility also follows a stochastic process which can be correlated with the underlying asset diffusion
process. Therefore a two-equation system is required to model the underlying movements. J. Hull
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and White (1987) suggested that the variance equation follows a log-normal process given by

dσ2

σ2
= δ dt+ ξ dz , (6.36)

where δ and ξ represent the drift and volatility of the volatility. Solving this two equation system
with partial derivatives requires complex numerical methods. Given that the volatility can neither
increase nor decrease indefinitely, Stein and Stein (1991) developed a mean reversion process for
the volatility diffusions, given as

dσ = δ(θ − σ) dt+ ξ dz , (6.37)

where θ is the mean reversion level. In developing an option pricing model Stein and Stein (1991)
assumed that the volatility was not correlated with the underlying asset. This assumption does
not allow for the skewness in the return distribution. Conversely Bakshi et al. (1997) noted
that in stochastic volatility models the correlation between the volatility and the underlying asset
determines the level of skewness while the volatility of the volatility determines the level of kurtosis
in the distribution of the asset returns.

Bakshi et al. (1997) added a jump component to stochastic volatility models to merge the best
elements of the two models. They compared stochastic volatility models with and without jumps.
The jump element improved the model for short-term options and accounted for the stochastic
volatility. However the model required improbable values for correlation and the volatility of
volatility to represent the skewness and kurtosis in the distribution of the returns.

Heston (1993) presented a stochastic volatility model that was not based on the Black-Scholes
formula. It provided a closed-form solution for the price of a European call option when the spot
asset is correlated with volatility. The model can be adapted and applied to currency options by
incorporating stochastic interest rates.

Heston (1993) relaxed the Stein and Stein (1991) model by allowing volatility to be correlated to
the underlying asset return, the variance follows a mean reversion function given by

dσ2 = δ(θ − σ2) dt+ ξ dz . (6.38)

The advantage of stochastic volatility models is that they give a different smile and skew shape
depending on the parameters used for the volatility process and the level of correlation between
the volatility and the underlying asset return. Nonetheless, these models are difficult to use and
cannot be employed for dynamic hedging. Bates (1996) and Bakshi et al. (1997) concluded that any
representation of the underlying asset price diffusion must incorporate both a stochastic volatility
and a jump diffusion process.
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Local Volatility Models

Stochastic volatility models can reproduce the implied volatility curve shape typically seen in the
markets, but cannot easily be calibrated with any implied volatility surface. Research into a version
that can be calibrated from the observed implied volatility surface led to the development of local
volatility models. These models provide a simple way to price options using implied trees. There
are two types of local volatility models: deterministic and stochastic local volatility models.

i. Deterministic Local Volatility Models: Dupire et al. (1994) initiated research into local volatility
models, removing the constant volatility assumption and introducing the local volatility theory
whereby the instantaneous volatility is considered to be a deterministic function of time and
the underlying asset, given as

dSt
St

= µdt+ σ(t, St) dzt . (6.39)

The local volatility σL(t, St) is equal to the instantaneous volatility σ(t, St) at a future time t and
corresponding underlying asset value St, pricing all observed options in a consistent manner. The
local volatility function can be determined from a market price surface C(T,K) of standard European
options with different exercise prices and maturities, leading to the Dupire formula

σ2
L(t, St|t = T, St = K) = 2

∂C
∂T + (r − q)K ∂C

∂K + qC

K2 ∂2C
∂K2

. (6.40)

Once the local volatility function has been determined the model calculates future underlying asset
prices. Therefore an option can be priced using this diffusion process which will be consistent with
all liquid options on the same underlying asset.

Traders use the local volatility approach because it is easy to use and retains the completeness of
the Black and Scholes (1973) model. Conversely Andersen and Andreasen (2000) criticised this
approach, claiming that movements in the smile in a deterministic local volatility model lead to
unstationary implied volatilities, implying that the volatility skew will disappear in the future,
contradicting empirical observations. Andersen and Andreasen (2000) extended the deterministic
local volatility models to account for jumps in the underlying asset diffusion process. This brings
together the jump process for modelling steep short-term skews and the local volatility to ensure
the model is in line with market option prices.

ii. Stochastic Local Volatility Models: Due to the dynamic hedging limitation of deterministic local
volatility models researchers sought to enhance them. Alexander and Nogueira (2004) pointed
out that the deterministic local volatility assumption implies that the instantaneous volatility
is also deterministic, contradicting empirical studies of stochastic volatility models. Therefore
Alexander and Nogueira (2004) developed a stochastic local volatility model to merge the two
model types. Alexander and Nogueira (2004) noted that the local volatility surface may be a
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deterministic function of t and S where the surface changes with time in a stochastic manner.
The equation for the underlying diffusion process is

dSt
St

= µdt+ σ (t, St : ν1(t), . . . , νn(t)) dzt , (6.41)

where (ν1(t), . . . , νn(t)) are those of a deterministic local volatility model: stochastic functions
correlated with each other and with the underlying asset. Therefore the instantaneous volatility
σ (t, St, ν(t)) is also stochastic.

6.2.5 Black-Scholes and the Foreign Exchange Option Pricing Model

Since almost all corporate liabilities can be viewed as combinations of options, the formula and
the analysis that lead to a theoretical valuation formula for options is also applicable to corporate
liabilities such as common stock, corporate bonds, and warrants. In particular the formula can be
used to derive the discount that should be applied to a corporate bond because of the possibility of
default.

Previous work on the valuation of options has been expressed in terms of warrants: a security issued
by a company giving its owner the right to purchase a share of stock at a given exercise price on or
before a given date: Sprenkle (1961), A. James Boness (1964) and P. Samuelson (1965).

The Sprenkle (1961) formula for the value of an option can be written as

f(S, t) = ιSN(b1)− ι∗KN(b2) ,

where b1 =
ln(ιS/K) + 1

2σ
2(t∗ − t)

σ
√

(t∗ − t)

and b2 =
ln(ιS/K)− 1

2σ
2(t∗ − t)

σ
√

(t∗ − t)
,

(6.42)

where S is the stock price, K the strike price, t∗ is the maturity date and t is the current date, σ2

is the variance rate of the return on the stock, N(b) is the cumulative normal density function and
ι and ι∗ are unknown parameters.

Sprenkle (1961) defined ι as the ratio of the expected value of the stock price at the time the warrant
matures to the current stock price and ι∗ as a discount factor that depends on the risk of the stock.
In attempting to estimate ι and ι∗ empirically Sprenkle (1961) found that it was not possible to do
so.

P. Samuelson (1965) assumed the distribution of the stock values when the warrant matures is
log-normal and takes the expected values: proposed unknown parameters α: rate of expected return
on the stock and β: the rate of expected return on the warrant or the discount rate to be applied
to the warrant. Cutting it off at the exercise price, P. Samuelson (1965) discounted this expected
value at the rate β. Unfortunately there was no model for pricing securities under this method.
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P. Samuelson and Merton (1969) noted that discounting the expected value of the distribution of
possible values of the warrant when it is exercised is not an appropriate procedure. P. Samuelson and
Merton (1969) advocated treating the option price as a function of the stock price, acknowledging
that the discount rates are determined in part by the willingness of investors to hold outstanding
amounts of both the stock and the option. However they failed to recognise that investors must
hold other assets as well, so that the risk of an option or stock that affects the discount rate is only
that part of the risk that cannot be diversified away.

One of the concepts Black and Scholes (1973) used in developing their model was that of Thorp
and Kassouf (1967) who obtained an empirical valuation for warrants by fitting a curve to actual
warrant prices. Thorp and Kassouf (1967) then used this formula to calculate the ratio of shares to
options needed to create a hedge position. However Thorp and Kassouf (1967) did not consider that
at equilibrium the expected return on a hedged position must be equal to the return on a riskless
asset. Black and Scholes (1973) used this equilibrium condition to derive a theoretical valuation
formula.

Black and Scholes (1973) noted that if options are correctly priced it is not possible to make a profit
by creating portfolios of long and short positions in options and their underlying stocks. The option
will depend only on the price of the stock and time and on variables that are taken to be known
constants. Under the assumptions on page 194 the stock price follows a continuous random walk
and the return has a constant variance rate, the covariance between the return on the equity: the
net position between the cost of the stock and income from the sold option, and the return on the
stock will be zero. Thus the risk in the hedged position is zero if the short position in the option
is adjusted continuously. Note that the direction of the change in the equity value is independent
of the direction of the change in the stock price. Using this principle Black and Scholes (1973)
derived an option pricing formula given in Equation (G.14) on page 198. R. C. Merton (1973) has
shown that the option value as given by this equation increases continuously as any one of σ2, r or
t increases. In each case, it approaches a maximum value equal to the stock price.

The partial derivative ∂f
∂S in Equation (G.10) on page 197 is of interest, because it determines the

ratio of shares of stock to options in the hedged position as in Equation (G.6) on page 196. Taking
the partial derivative of Equation (G.10), and simplifying, gives

∂f

∂S
= N(d1) , (6.43)

where (d1) is as defined in Equation (G.14). It is clear that S ∂f∂S in Equation (G.10) is always greater
than one. This shows that the option is always more volatile than the stock.

Valuation of Currency Options

A European call option on a foreign exchange is defined as the right, but not the obligation, to buy
one unit of the currency on a predetermined date at a predetermined exchange rate. The prices
of foreign currency options are important in determining the values of other financial contracts.
Feiger and Jacquillat (1979) considered the currency option bond: the bond holder can choose in
which currency the coupons and principle are paid out according to a pre-determined exchange rate,
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noting that this was equivalent to a single currency bond plus a foreign currency option, giving

S = B + cp , (6.44)

where S is the bond price paying either $1 or £p at time T , B the price of a pure discount bond
paying $1 at time T and c is the price of a European call to purchase $1 for a dollar price of 1

p at
time T .

Investors can utilise currency options by combining a short position in a currency with a call option,
limiting the downside risk while benefiting from favourable exchange rate movements. Foreign
currency options are also employed by corporations uncertain whether it will have a long position
in a currency. Feiger and Jacquillat (1979) noted in such circumstances the combination of a forward
contract to sell currency at time T and a call option to buy it at time T provides a hedge not available
in forward contracts alone.

Feiger and Jacquillat (1979) developed a valuation model for two-currency, currency option bonds,
assuming a joint stochastic process for the exchange rate, domestic and foreign interest rates. Stulz
(1982) developed a series of analytical formulas for European put and call options on the minimum
or maximum of two risky assets. These can be applied to value currency options. Under the
assumption that a stochastic process for just one variable produces a simpler valuation formula
than proposed by Feiger and Jacquillat (1979), Biger and Hull (1983) derived a valuation formula
for European put and call foreign exchange options using the Black-Scholes methodology. Biger
and Hull (1983) valued European put and call options on a foreign currency under the following
assumptions:

i. The price of one unit of foreign currency follows a geometric Brownian motion.

ii. The foreign exchange market operates continuously with no transaction costs or taxes.

iii. The risk-free interest rates in both the foreign and domestic country are constant during the
life of the option.

Given the choice foreign currency investors would always choose to invest in short-term risk-free
foreign currency bonds in preference to holding the foreign currency in some non-interest-bearing
account. Assume a holding of a foreign currency gives a return equal to the foreign risk-free rate;
therefore valuing an option on a foreign currency can be viewed as being the same problem as
valuing an option on a stock paying a continuous dividend. Black and Scholes (1973) assumed that
no dividends are paid on the stock during the life of the option, thus their model cannot be directly
applied to value an option on a foreign currency. R. C. Merton (1973) and Smith Jr (1976) address
this by making the assumption that the dividend yield, q, is constant. Constructing a riskless hedge
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and applying the dividend yield q, the Black-Scholes foreign exchange valuation formula becomes

c = Se−qTN(d1)−Ke−rdTN(d2) ,

p = Ke−rdTN(−d2)− Se−qTN(−d1) ,

where d1 =
ln(S/K) + (rd − q + 1

2σ
2)T

σ
√
T

and d2 =
ln(S/K) + (rd − q − 1

2σ
2)T

σ
√
T

,

(6.45)

where c is a European call and p a European put option to purchase or sell one unit of the foreign
currency, S is the spot price of one unit of the foreign currency, σ2 the instantaneous variance of
the return on a foreign currency holding, K the exercise price, T the time to maturity, rd is the
domestic country risk-free rate and q is the dividend yield.

The deliverable instrument of an FX option is a fixed amount of underlying foreign currency. In
the standard Black and Scholes (1973) option-pricing model, the underlying deliverable instrument
is a non-dividend-paying stock. The difference between the two underlying instruments is readily
seen when comparing their equilibrium forward prices. When interest rates are constant, as in
the Black-Scholes assumptions, arbitrage ensures that the forward price of the stock commands a
forward premium equal to the interest rate. But in the foreign currency markets, forward prices can
involve either forward premiums or discounts. This is because the forward value of a currency is
related to the ratio of the prices of riskless bonds traded in each country. The no-arbitrage condition
for covered Interest Rate Parity requires the forward exchange premium to equal the interest rate
differential, which may be either positive or negative. Thus both foreign and domestic interest rates
play a role in the valuation of these forward contracts, and it is therefore logical to expect that such
a role extends to options as well.

The forward rate plays a central role in the valuation of foreign currency options. Define F as the
forward rate on the foreign currency for a contract with delivery date T . Interest Rate Parity theory
implies

ln(F/S) = (rd − rf )T . (6.46)

If the foreign currency risk-free interest rate rf is assumed to be constant, substituting Equation
(6.46) into Equation (6.45) provides a valuation formula for a European call and put option written
on the foreign currency when q = rf that is dependent on F rather than S, with K,σ, T and rd the
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same as the Black-Scholes formula, given as

c = Fe−rfTN(d1)−Ke−rdTN(d2) ,

p = Ke−rdTN(−d2)− Fe−rfTN(−d1) ,

where d1 =
ln(F/K) + (1

2σ
2)T

σ
√
T

and d2 =
ln(F/K)− (1

2σ
2)T

σ
√
T

.

(6.47)

This extension of the Black-Scholes approach enables the investor to form a riskless hedge by
combining forward contracts with a short position in call options. At any given time, t, the portfolio
is adjusted so that the ratio of forward contracts held to call options sold is ∂c/∂F1, where F1 =

Fe−r(T−t) and F is the forward rate at time t for a contract with delivery date T . An analysis
analogous to that of Black and Scholes (1973) provides a differential equation relating c, p and F if
it is assumed that:

i. F follows a geometric Brownian motion.

ii. The forward exchange market operates continuously with no transaction costs and no taxes.

iii. The domestic risk-free rate, rd, is constant.

Thus, if it can be assumed that the forward rate follows a geometric Brownian motion it is not
necessary to assume a constant foreign risk-free rate. When making the additional assumption
that the foreign risk-free interest rate, rf , is constant, F follows a geometric Brownian motion if
and only if S does and σF the instantaneous standard deviation of F equals the instantaneous
standard deviation of the return on a foreign currency holding. The result then becomes equivalent
to Equation (6.47).

An Alternative Foreign Exchange Option Derivation

The modified Black-Scholes foreign exchange option pricing formula, Equations (6.47) can also be
derived under the following assumptions:

i. The covariance of the returns from an option of the foreign currency and the returns from the
international market portfolio is zero.

ii. The spot rate follows a geometric Brownian motion with instantaneous standard deviation σ.

iii. The international Sharpe-Lintner capital asset pricing model holds. The model converts the
mean–variance Capital Asset Pricing Model (CAPM) model into a market-clearing asset-pricing
model and assumes a risk-free rate.
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Options on the foreign currency should be valued at their expected terminal value, discounted at
the risk-free rate as

c = e−rT
∞∫
X

(ST −X) f(St|S0) dST

and

p = e−rT
X∫

0

(X − ST ) f(St|S0) dST ,

(6.48)

where ST is the price of the foreign currency at time T , S0 is the price of the foreign currency at
time 0, f is the probability distribution of ST conditional on S0 and assuming ln(ST /S0) is normally
distributed with standard deviation σ

√
T .

The log-normal property of geometric Brownian motion has been widely used in stock option pricing
models. This has an added appeal when applied to foreign currency. If the price of the foreign
currency expressed in terms of the domestic currency is log-normal then the price of the domestic
currency expressed in terms of the foreign currency is also log-normal.

Using integrals of the log-normal distribution derived by Sprenkle (1961) and reproduced by Smith Jr
(1976) it follows that

c = SeρT−rTN(d1)−Ke−rTN(d2) ,

p = Ke−rTN(−d2)− SeρT−rTN(−d1) ,

where d1 =
ln(S/K) + (ρ+ 1

2σ
2)T

σ
√
T

and d2 =
ln(S/K) + (ρ− 1

2σ
2)T

σ
√
T

.

(6.49)

where ρ is the expected average growth in the price of the foreign currency. From assumptions (i)
and (iii) above, it follows that the forward rate F is an unbiased predictor of the spot rate at time
T , hence

ρT = ln(F/S) . (6.50)

When Equation (6.50) is substituted into Equation (6.49) it gives Equation (6.47).
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Alternative Assumptions for Foreign Exchange Option Derivation

Garman and Kohlhagen (1983) developed alternative assumptions to the Black and Scholes (1973)
model leading to a valuation formula for foreign exchange options. This valuation formula has
a strong connection with the commodity-pricing model of Black (1976): when forward prices are
given, and with the proportional dividend model of P. Samuelson and Merton (1969): when spot
prices are given.

The Garman and Kohlhagen (1983) standard assumptions for a European option-pricing model are:

i. Geometric Brownian motion governs the currency spot price and the differential representation
of spot price movements is dS = µSdt+ σSdz, where µ is the drift rate, σ the volatility and z is
the standard Wiener process.

ii. Option prices are a function of only one stochastic variable, namely S.

iii. Markets are frictionless.

iv. Interest rates, both in the domestic and foreign markets, are constant.

The Garman and Kohlhagen (1983) approach to foreign exchange (FX) options relates the role of
domestic and foreign interest rates by comparing the advantages of holding an FX option with those
of holding its underlying currency. The risk-adjusted expected excess returns of securities must be
identical in an arbitrage-free continuous-time economy, that is

αi − rd
σsi

= Υ, for all i . (6.51)

where αi is the expected return on a security, rd the domestic riskless interest rate, σsi the standard
deviation of the security rate of return and where Υ does not depend on the security being considered.
Applying this fact to the ownership of foreign currency, gives

(µ+ rf )− rd
σ

= Υ , (6.52)

where the expected return from holding the foreign currency is the drift of the exchange rate in
domestic units per foreign unit, µ, plus the riskless capital growth arising from holding the foreign
currency in the form of an asset paying interest at the rate of rf and σ is the standard deviation of
the rate of return on holding the currency.

Letting c(S, T ) be the price of a European call option with time T left to maturity then

αc − rd
σsc

= Υ , (6.53)
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where αc is the call option’s expected rate of return and σsc the options standard deviation. Applying
Itô’s lemma this becomes

αcc = µS
∂c

∂S
− ∂c

∂T
+

1

2
σ2S2 ∂

2c

∂S2
(6.54)

and

σscS = σS
∂c

∂S
. (6.55)

Substituting Equations (6.54) and (6.55) into Equation (6.53) yields

µS ∂c
∂S −

∂c
∂T + 1

2σ
2S2 ∂2c

∂S2 − rdc
σ ∂c
∂S

= Υ , (6.56)

combining Equations (6.52) and (6.53) gives

σ2

2
S2 ∂

2c

∂S2
− rdc+ (rdS − rfS)

∂c

∂S
=

∂c

∂T
. (6.57)

Equation (6.57) is reminiscent of models proposed by P. Samuelson (1965) and P. Samuelson and
Merton (1969) in which the dividend rate of a stock is presumed to be proportional to the level of
the stock price. This interpretation can be applied for foreign currency options by regarding the
foreign interest rate rf , in terms of the domestic rate, as the dividend rate of the foreign currency.

The solutions to Equation (6.57) for European FX call options must obey the option boundary
conditions c(S, 0) = max[S −K, 0] and conversely the boundary conditions for European put options
p(S, 0) = max[K − S, 0] yielding the valuation formula

c = Se−rfTN(d1)−Ke−rdTN(d2) ,

p = Ke−rdTN(−d2)− Se−rfTN(−d1) ,

where d1 =
ln(S/K) + (rd − rf + 1

2σ
2)T

σ
√
T

and d2 =
ln(S/K) + (rd − rf − 1

2σ
2)T

σ
√
T

.

(6.58)

The valuation formulation for European FX options depend on both foreign and domestic interest
rates. Note that the foreign interest rate rf and the interest differential rd − rf play distinct roles
in the solution.
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In the foreign currency markets, forward prices can involve either forward premiums or discounts
because the forward value of a currency is related to the ratio of the prices of riskless bonds traded
in each country. Accepting the Interest Rate Parity relationship, the forward price F of currency
deliverable at the option maturity date T is

F = e(rd−rf )TS . (6.59)

Substituting Equation (6.59) into Equations (6.58) gives

c(F, T ) = e−rdT [FN(d1)−KN(d2)] ,

p(F, T ) = e−rdT [KN(−d2)− FN(−d1)] ,

where d1 =
ln(F/K) + (1

2σ
2)T

σ
√
T

and d2 =
ln(F/K)− (1

2σ
2)T

σ
√
T

,

(6.60)

where the option value depends only upon F and rd and does not depend independently upon S and
rf . Given the current domestic interest rate, all option-relevant information concerning the foreign
interest rate and the spot currency price is reflected in the forward price.

Garman and Kohlhagen (1983) concluded that the Black-Scholes option pricing model does not
apply well to foreign exchange options since multiple interest rates are involved in ways differing
from the Black-Scholes assumptions. Garman and Kohlhagen (1983) found that the appropriate
valuation formulas for European FX options depend on both foreign and domestic interest rates.

Sørensen (1997) presented a modified version of the Garman and Kohlhagen (1983) formula where
the equilibrium approach deviated from the no-arbitrage assumption by allowing domestic and
foreign interest rates to be dynamically determined endogenously in the model. Within the Garman
and Kohlhagen (1983) approach the drift parameter has no direct influence on the currency option
price. The expected change in the exchange rate is represented in the option pricing formula through
the domestic and foreign interest rates. Sørensen (1997) established a relationship between exchange
rate dynamics and the dynamics of the domestic and foreign interest rates. If the foreign and
domestic interest rates evolve according to Gaussian processes, it is possible to obtain closed-form
pricing formula of the form derived by Garman and Kohlhagen (1983).

The Sørensen (1997) variant in the analysis is the characterisation of the volatilities for option
pricing, which only depend on exchange rate parameters. The volatilities are expressed as a function
of time and the parameters describing the variability of the log-exchange rate. This is possible due
to the relationship between the exchange rate dynamics and the dynamics of the term structure
of interest rates. From an equilibrium perspective, parameters in the drift term for the exchange
rate may enter the Garman and Kohlhagen (1983) formula directly. Sørensen (1997) advocates that
exchange rate parameters implicitly and explicitly affect currency option pricing.
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6.2.6 Model Comparison and Risk Reversal Valuations

Pagès (1996) considered whether option pricing data could be useful in predicting exchange rate
changes. Option prices reflect the market perceptions of the underlying asset’s distribution, so they
may reveal information about the future movement of exchange rates.

Among option-based forecast indicators in the foreign exchange market, two alternatives seem to
be particularly relevant:

i. At-the-money volatility: the market’s implicit volatility forecast for those options whose strike
price is closest to being at the forward rate.

ii. The price of risk reversals: a derivative instruments constructed as a linear combination of
out-of-the-money call and put options, written on the same currency and expiring at the same
date.

This paper will focus on the risk reversal preference.

The payoff from risk reversals can be either negative or positive for large deviations of the exchange
rate from the forward rate, depending on the direction of the move. For this reason, they are often
interpreted as the market’s best guess about the directional bias of future exchange rate movements.

Forecasts in the foreign exchange market are measured in terms of the variation from the forward
rates, referred to as the forward bias. Pagès (1996) supports the view that information revealed
by option prices helps improve forecasts of future spot rates. Pagès (1996) points to a correlation
between risk reversals and the forward bias: when the price of risk reversals goes up, the leading
currency’s forward rate tends to increase with respect to future realisations of the spot rate. If
there is a downward forward bias, implying that on average the forward rate is below the future
spot rates, the bias will be reduced. Conversely, if the bias is upwards, indicating an overestimation
of realised future spot rates, the bias will be increased.

Risk reversals capture the skewness of the exchange rate distribution. Skewness in option pricing
can cause a risk reversal that theoretically should have no cost to have a positive or negative cost.
Malz (1996) asserts that the skewness is an indication of market sentiment regarding the likelihood
of a currency appreciating or depreciating. The risk reversal cost can be regarded in one of two
ways:

i. A positive or negative net cost.

ii. If the purchaser of the risk reversal is unwilling to incur upfront costs, then the strike prices of
the risk reversal may need to be adjusted.

This analysis will assume the first approach.

Traders often portray the skewness in volatility terms, and refer to the risk reversal cost as the
difference in volatility. The skewness of a volatility smile in equally out-of-the money call and put
options may be caused by differences in their respected volatilities: Malz (1997).
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Exchange rate shocks seem to be asymmetric, in that their magnitude tends to vary according
to whether the spot rate appreciates or depreciates. Classical option pricing theory requires that
exchange rates follow a geometric Brownian motion with constant second moments. Market-makers
have known that this key assumption is flawed and use standard implied volatilities only as a
convenient way to price options. Empirical investigations concerning nominal returns: Westerfield
(1977), found that nominal exchange returns violate the normality assumption with respect to:

i. The distribution having a time-varying variance, with contiguous periods of high and low
volatility.

ii. Having fat tails, implying that for a given variance there is a higher probability of large
deviations from the mean.

iii. It is skewed, in that an appreciation and a depreciation of a given size are not equally likely.

As a result, alternative models have been developed to generalise the Black-Scholes formula by
allowing volatility to change randomly: J. Hull and White (1987), Scott (1987) and Wiggins (1987).
Melino and Turnbull (1991) found that these models can explain the price of currency options,
although they tended to overestimate volatility.

The Pagès (1996) empirical results asserted that the forward biases were positively correlated with
risk reversals. Risk reversals capture the directional biases in the exchange rate with respect to the
risk-neutral probability and conditional on large deviations from the forward rate. Risk reversals
do capture the skewness of the distribution. An interpretation is that the volatility is stochastic
and its time-varying correlation with the exchange rate induces skewness in the distribution. This
is precisely what makes risk reversals valuable. Hence, the price changes of risk reversals reflect the
time-varying correlation between exchange rate risk and volatility risk.

Dunis and Lequeux (2001) investigated whether there was any informational value that can be
derived from the price of risk reversals: the volatility amount by which a 25-delta call is more or
less expensive than a 25-delta put, and use this information to assess the future evolution of exchange
rates. Risk reversals are a measure of the skewness of the distribution and directly observable. The
possibility of positively correlated directional information embedded in risk reversals values derives
from the very high level of contemporaneous correlation rather than from lagged information that
may exist between the risk reversals and the underlying time series.

Risk reversals are directional option strategies. The strategy involves the simultaneous sale of an
out-of-the-money put and purchase of an out-of-the-money call, of the same maturity.

These strategies are usually built around options that have a 1-month or 3-month time value
and that have out-of-the-money strikes corresponding to 25% delta. Option delta values are an
indication of the degree the option is in-the-money or out-of-the-money. The delta rises as options
are increasingly in-the-money and reduce as the options move progressively out-of-the money.
At-the-money options have a value of 50-delta, suggesting a 50% likelihood of ending up either
in-the-money or out-of-the-money at maturity. Hence a 25-delta option is out-of-the-money with
only a 25% chance of ending in-the-money at maturity. Delta is the change in the value of an
option for an infinitesimal change in the exchange rate. A standard out-of-the-money currency
option offered in the interbank market is a 25-delta option, which means that the price of the
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option would change 0.25% for a 1% change in the exchange rate. Thus a 25-delta option is an
indication of the degree an option is out-of-the-money.

Dunis and Lequeux (2001) investigated the economic implications of using risk reversals as a source
of information to trade the spot foreign exchange market. Dunis and Lequeux (2001) examined the
two most common assumptions made by market practitioners that risk reversals are either:

i. Directional trend indicators.

ii. Early trend reversal indicators.

Technical trading strategies, chartism, enable traders to make financial decisions without relying
on fundamental analysis. Chartists suppose that the price contains all the information pertaining
to the market. Therefore the price incorporates the fundamental views by default. The chartist
hypothesises that all available information and economic data are taken into account in the exchange
rate and hence the pricing of the risk reversal.

To evaluate the economic viability of these two assumptions, Dunis and Lequeux (2001) devised
trading strategies using risk reversal levels and compared the returns obtained to those generated
by using a simple 21-day moving average trading strategy on the spot exchange rate itself.

The alternative FX option pricing model will be evaluated by comparing the risk reversals derived
from this model. Utilising the Dunis and Lequeux (2001) trading strategies to forecast the spot
market, the modified risk reversals forecasting performance will be compared to the BSM market
derived risk reversals. The premise being that an improved model should be used more profitably
within a directional forecasting context: the better model is assumed to afford improved forecasting
abilities.

6.3 Conclusions

A common feature of the established FX option pricing models in the market today is the acceptance
of geometric Brownian motion as the diffusion process on which they are based. The Black and
Scholes (1973) model is the defining element in option pricing theory. However a number of the BSM

assumptions have been challenged in light of the discrepancies between some of these assumptions
and what is seen in the market. Rather than enhance or extend the Black and Scholes (1973)
model to allow for these discrepancies the diffusion process on which the model is based has been
examined.

This chapter was concerned with the main area underpinning the discrepancy between the market
price and the BSM option price, that of the stochastic price process governing the behaviour of the
underlying asset. To identify the foreign exchange price processes, the data will be transformed
to comply with the assumption that the price process follows a geometric Brownian motion of the
form shown in Equation (B.16) on page 156. The Kon (1984) shift parameter will be applied to the
system of normal distributions to transform the data, generating a modified geometric Brownian
motion process. The system of normal distributions can then be used to address the discrepancy
between the theoretical model and the actual price distributions. The modified price process will
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then be applied to the Black and Scholes (1973) method to arrive at a closed form option pricing
model that can be utilised by traders.

Due to insufficient option pricing data, the modified model will be evaluated by comparing the risk
reversal derived from it to that of the market derived risk reversals using the trading strategies
outlined by Dunis and Lequeux (2001). The performance criterion is founded on the premise that
the better model will more accurately reflect the information contained in the market in forecasting
the foreign exchange directional changes.
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Chapter 7

A New Approach to Pricing FX
Options

There are many derivations of the Black–Scholes equation for the price of a European call option.
The methods used for proving the Black–Scholes formula fall into two categories:

i. The bond replication method: Black and Scholes (1973).

ii. The call replication method: R. C. Merton (1976).

These two methods are not equivalent. The bond replication method contains greater restrictions
on the call price: notably that the call price is reasonably bounded and a function of the spot price
and time, whereas the call replication method only requires the continuity of the call option price.

Rosu and Stroock (2003) considered the differences between the two methods. Accepting that the
Black and Scholes (1973) environment contains a stock S, a bond B, and a European call option
C then the bond replication method requires that the hedged portfolio Π involved in the arbitrage
argument is both riskless and self-financing. Let a portfolio formed with the stock and call be
Π = aS− bC which replicates a riskless and self-financing bond. The self-financing condition implies
dΠ = a dS − b dC which together with the riskless condition gives Π = b(SC − C). An arbitrage
argument shows that Π must earn interest at the riskless rate r, hence dΠ = rΠ dt. Applying Itô’s
process, which is a generalised Wiener stochastic process where the parameters are functions of
the stock S and time t, the call option price C must satisfy the Black-Scholes partial differential
equation.

Conversely the call replication method proceeds by attempting to replicate the call option price by
forming a portfolio Θ with the stock and the bond such that Θ = αS + βB has the same payoff as
C at maturity. If Θ is self-financing then the arbitrage argument implies that the call option price
C should equal the portfolio Θ at any given time. Applying Itô’s process the replicating conditions
determines Θ at maturity as the solution to the Black-Scholes equation.

The Black and Scholes (1973) bond replication and the R. C. Merton (1976) call replication methods
for proving the Black-Scholes formula assume the stock price S follows a normally distributed
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geometric Brownian motion. Employing the Kon (1984) model, the stock price behaviour will be
amended to reflect the discrepancy between the theoretical and observed price distributions. The
Kon (1984) discrete mixture of normal distributions, whose drift parameter µ and volatility σ are
time dependent and shift along a finite number of values determined from real data, will be used
to identify the foreign exchange price process. This price process will be the basis of an FX option
pricing model based on the Black-Scholes methodology which will be proved using the original bond
replication method.

7.1 The Modified Distribution of Foreign Exchange

7.1.1 The Discrete Mixture of Normal Distributions Modification to GBM

Kon (1984) argued that the distribution of stock returns may be normal with parameter shifts among
a finite set of values. The parameters shifts explain the observed skewness: due to differences in
the mean, and the kurtosis: due to differences in the variance. Noting that stationarity tests on the
parameter estimates revealed significant differences in the mean and variance of the daily return
distribution, Kon (1984) proposed the validity of the discrete mixture of normal distributions process
as a statistical model for stock returns.

To identify the parameters of the normal distribution Kon (1984) assumed each return observation
is drawn from one of N sets of parameter values. The EViews 11 stability diagnostic: multiple
breakpoint test estimation procedure was employed to identify the N normal distributions. Tests
for parameter instability and structural change are an important part of applied econometric work.
The stability test examines whether the parameters of the discrete normal model are stable across
sub-samples of the data. In some cases there may be obvious points at which to determine a break
in the data: a financial shock, a switch from fixed to floating exchange rates, etc. Where there is
no obvious break point econometric methods are applied.

Where Chow (1960) developed a test for regime change at known dates, Quandt (1960) and Andrews
(2003) modified the Chow (1960) framework deriving the limiting distribution for the largest value
over all possible breakpoint dates. Bai (1997) and Bai and Perron (1998) further provided a
theoretical and computational result that extended the Quandt-Andrews framework by allowing
multiple unknown breakpoints. To use the tools for testing multiple breakpoints the equation
is initially estimated by the method of least squares. From the estimated equation the global
information criterion uses the information computed from the global optimisers to determine the
number of breaks. The Yao (1988) information criterion shows that the number of breaks that
minimises the Schwarz criterion is a consistent estimator of the true number of breaks. The output
gives the global optimiser: estimated breakpoint dates for each number of breaks, the number of
estimated coefficients and the logarithmic likelihood along with the Schwarz (SIC) and the Liu, Wu
and Zidex (LWZ) information criterion and the sum of squared residuals.

For each of the N-distributions the parameter estimates are differenced see Table 5.5 on page 80.
The shift in the mean and variance parameters explain the change in the investment and financial
decision variables. This change results in an adjustment to the expected return and the standard
deviation of the return distribution observed in the markets.
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Under the assumption that geometric Brownian motion is the ideal model for the stock price returns,
then allowing for the shift in the parameters suggests that the modified geometric Brownian motion,
incorporating the parameter shifts, is a better representation of the return distribution, given by

dS = (µ+ µshift)Sdt+
√

(σ2 + σ2
shift)Sdz , (7.1)

where µ is the entire sample period mean and σ2 the corresponding variance and µshift and σ2
shift

is the shift in the mean and variance corresponding to the N th distribution.

7.1.2 The Modified GBM Derivation of the BSM Equation

A fundamental assumption of the Black and Scholes (1973) formula is that the stochastic process for
the stock price followed a geometric Brownian motion. A model for FX spot rates must allow for the
stochastic price behaviour and strict positivity. These are the same requirements applied to the BSM

stock model. Therefore these requirements follow the Black and Scholes (1973) and the associated
work of Garman and Kohlhagen (1983) in describing the spot rate by a geometric Brownian motion.
However the assumption here is that the price process is the Kon (1984) parameter shifted modified
geometric Brownian motion given by

dS

S
= (µ+ µshift) dt+

√
(σ2 + σ2

shift) dz , (7.2)

where S is the FX spot rate and dS/S follows a modified geometric Brownian motion with expected
rate of return (µ+ µshift) and variance (σ2 + σ2

shift).

A fundamental principle of the Black and Scholes (1973) formula is the creation of a riskless portfolio
consisting of a certain proportion of shares and options satisfying the boundary conditions. The
situation in foreign exchange is more complicated in that the FX spot rate S is not a store of
wealth and cannot be regarded as a tradeable stock. Instead exchange rates should be regarded as
a stochastic conversion rate relating two numeraire currencies, each with a money market account
in either currency. In this case the contingent claim f(S, t) derives its value from the performance of
an FX rate S where the tradeable asset is not the FX rate S but rather the foreign bond Bf valued
in units of the domestic currency: SBf . The expected rate of return now becomes the difference
between the risk-free rates of the respective currencies.

Suppose that f is the price of a contingent claim on FX where f is a function of the FX rate S and
t. Using this assumption and letting f(S, t) denote the price of the option derived from the spot
exchange rate S at time t; applying Itô’s giving

df =
∂f

∂t
dt+

∂f

∂S
dS +

1

2

∂2f

∂S2
dS2 , (7.3)
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where dS2 = (σ2 + σ2
shift)S

2 dt. Thus

df =

[
∂f

∂t
+

1

2

∂2f

∂S2
(σ2 + σ2

shift)S
2

]
dt+

∂f

∂S
dS . (7.4)

The term inside the brackets is deterministic, whereas the term in front of the dS is the only
stochastic term. Black and Scholes (1973) removed the stochastic term by constructing a portfolio
Π which is short one unit of the contingent claim f and long ∂f/∂S units of the underlying asset

Π = −f +
∂f

∂S
S . (7.5)

The construction of the delta-hedged portfolio for foreign exchange is somewhat different.

Proposition 1: There is no natural numeraire currency for foreign exchange rates; therefore a
delta-hedged portfolio must incorporate a foreign currency bond as the arbiter of value. Thus the
exchange rate is now determined by the value of the bond and the spot FX rate. The fundamental
equation now becomes,[

∂f

∂t
+

1

2

∂2f

∂S2

(
σ2 + σ2

shift

)
S2 +

∂f

∂S
(rd − rf ) S − rdf

]
= 0 . (7.6)

Proof: The construction of the hedged portfolio Π is obtained by going short one unit of the
contingent claim f and long ∆ units of the foreign bond valued in units of the domestic currency

Π = −f + ∆SBf . (7.7)

The change dΠ in the value of the portfolio over the interval dt is given by

dΠ = −df + ∆ d(SBf ) , (7.8)

expanding gives
dΠ = −df + ∆Bf dS + ∆S dBf . (7.9)

Given the return on the foreign bond is the risk-free foreign interest rate over time: dBf = rfBf dt

then
dΠ = −df + ∆Bf dS + ∆S rfBf dt . (7.10)

Applying the modified geometric Brownian motion dS

dΠ = −df + ∆Bf

[
(rd − rf )S dt+

√
σ2 + σ2

shift S dz
]

+ ∆S rfBf dt , (7.11)

expanding

dΠ = −df + ∆Bf (rd − rf )S dt+ ∆Bf

√
σ2 + σ2

shift S dz + ∆S rfBf dt , (7.12)

collecting the terms

dΠ = −df + [∆Bf (rd − rf )S + ∆S rfBf ] dt+ ∆Bf

√
σ2 + σ2

shift S dz , (7.13)
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expanding

dΠ = −df + [∆Bfrd S −∆Bfrf S + ∆rfBf S] dt+ ∆Bf

√
σ2 + σ2

shift S dz , (7.14)

and simplifying

dΠ = −df + ∆Bfrd S dt+ ∆Bf

√
σ2 + σ2

shift S dz , (7.15)

collecting the terms

dΠ = −df + ∆Bf

[
rd S dt+

√
σ2 + σ2

shift S dz
]
, (7.16)

expanding Itô’s lemma to the diffusion process df

dΠ =

[
−∂f
∂t
− 1

2

∂2f

∂S2

(
σ2 + σ2

shift

)
S2

]
dt− ∂f

∂S
dS + ∆Bf

[
rd S dt+

√
σ2 + σ2

shift S dz
]
, (7.17)

expanding and collecting the terms

dΠ =

[
−∂f
∂t
− 1

2

∂2f

∂S2

(
σ2 + σ2

shift

)
S2 + ∆Bfrd S

]
dt− ∂f

∂S
dS + ∆Bf

√
σ2 + σ2

shift S dz , (7.18)

applying the modified geometric Brownian motion dS

dΠ =

[
−∂f
∂t
− 1

2

∂2f

∂S2

(
σ2 + σ2

shift

)
S2 + ∆Bfrd S

]
dt− ∂f

∂S

[
(rd − rf )S dt+

√
σ2 + σ2

shift S dz
]

+ ∆Bf

√
σ2 + σ2

shift S dz , (7.19)

expanding

dΠ =

[
−∂f
∂t
− 1

2

∂2f

∂S2

(
σ2 + σ2

shift

)
S2 + ∆Bf rd S

]
dt− ∂f

∂S
(rd − rf )S dt

− ∂f

∂S

√
σ2 + σ2

shift S dz + ∆Bf

√
σ2 + σ2

shift S dz , (7.20)

collecting the dt and dz terms

dΠ =

[
−∂f
∂t
− 1

2

∂2f

∂S2

(
σ2 + σ2

shift

)
S2 − ∂f

∂S
(rd − rf ) S + ∆Bf rd S

]
dt

−
[
∂f

∂S
−∆Bf

]√
σ2 + σ2

shift S dz . (7.21)

To cancel the dz term, ∆ must satisfy ∂f
∂S = ∆Bf , that is

∆ =
1

Bf
· ∂f
∂S

. (7.22)

Substituting Equation (7.22) into (7.21) gives

dΠ =

[
−∂f
∂t
− 1

2

∂2f

∂S2

(
σ2 + σ2

shift

)
S2 − ∂f

∂S
(rd − rf ) S +

1

Bf

∂f

∂S
Bfrd S

]
dt

−
[
∂f

∂S
− 1

Bf

∂f

∂S
Bf

]√
σ2 + σ2

shift S dz , (7.23)
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simplifying

dΠ =

[
−∂f
∂t
− 1

2

∂2f

∂S2

(
σ2 + σ2

shift

)
S2 − ∂f

∂S
(rd − rf ) S +

∂f

∂S
rd S

]
dt . (7.24)

Applying domestic risk neutrality the portfolio return is given as

dΠ = rd Πdt where Π = −f +
∂f

∂S
S . (7.25)

Therefore giving[
−∂f
∂t
− 1

2

∂2f

∂S2

(
σ2 + σ2

shift

)
S2 − ∂f

∂S
(rd − rf ) S +

∂f

∂S
rd S

]
dt = rd

[
−f +

∂f

∂S
S

]
dt , (7.26)

expanding and cancelling dt gives[
−∂f
∂t
− 1

2

∂2f

∂S2

(
σ2 + σ2

shift

)
S2 − ∂f

∂S
(rd − rf ) S +

∂f

∂S
rd S

]
=

[
−rdf +

∂f

∂S
rdS

]
, (7.27)

simplifying[
∂f

∂t
+

1

2

∂2f

∂S2

(
σ2 + σ2

shift

)
S2 +

∂f

∂S
(rd − rf ) S − ∂f

∂S
rd S +

∂f

∂S
rd S − rdf

]
= 0 , (7.28)

which reduces to [
∂f

∂t
+

1

2

∂2f

∂S2

(
σ2 + σ2

shift

)
S2 +

∂f

∂S
(rd − rf ) S − rdf

]
= 0 . (7.29)

Note that the foreign interest rate rf appears in the convection term but not in the forcing term
and the absence of any µ term. The derivative is obtained when the partial differential equation
(PDE) is solved with boundary condition f = max(S−K, 0) for the call option and f = max(K−S, 0)

for the put.

The Black-Scholes form of the PDE describes how the value of a derivative contract, at a continuum
of future prices, is diffused backwards in time to the present. The present value of a derivative
in units of the domestic currency is identified as the discounted expectation under the domestic
risk-free measure

f0 = e−rdTEd [fT ] , (7.30)

where f0 is the present value of the derivative at time t = 0 and fT the terminal value discounted
at the risk-neutral domestic measure rd and Ed is the expectation with respect to the domestic risk
neutral rate. The risk-neutral measure, assumed to take a particular value of drift rate µ in the
price of a risky asset, so that an investor’s expectations of the returns of the two assets available
to them are identical. But what are these two assets in foreign exchange? Foreign exchange (FX)

has the choice of two bonds: the domestic bond Bd and the foreign bond Bf , where the FX spot
rate must be used to convert one into the numeraire currency. Thus this gives us the choice of two
risk-neutral measures in foreign exchange.
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7.1.3 The Valuation of European FX Options

In obtaining the modified Black-Scholes partial differential equation (PDE), see Equation (7.29), the
real-world drift term (µ+µshift) does not appear. The equation does not involve any variables that
are affected by the risk preferences of the investors. Therefore it can be assumed that all rational
investors arrive at the same price for the derivative irrespective of the value of the expected drift
rate. The risk-neutrality is an important assumption for the analysis of derivatives. The PDE does
not contain the risk preferences of investors, the variables that do appear are:

i. Current spot price S,

ii. Time to maturity T .

iii. Variance (σ2 + σ2
shift).

iv. Risk-free domestic rate rd and foreign rate rf .

Proposition 2: Given that there is no natural numeraire in FX and the investors risk preferences do
not appear, then the FX option pricing formula must incorporate the FX risk-neutrality comprised
by the choice of two bonds: the domestic bond Bd and the foreign bond Bf , linked by the FX spot
rate.

Proof: From Clark (2011) consider a European call option with payout fT = max(ST − K, 0) =

(ST −K)+ at time T . The present value of the option price would be

f0 = e−rdTEd
[
(ST −K)+

]
, (7.31)

given the indicator function: indicates membership of an element in a subset, 1(S≥K) of an event
(S ≥ K) occurring then

f0 = e−rdTEd
[
(ST −K)1(S≥K)

]
, (7.32)

expanding
f0 = e−rdTEd

[
ST 1(S≥K) −K1(S≥K)

]
, (7.33)

taking discounted expectations

f0 = e−rdTEd
[
ST 1(S≥K)]−Ke−rdTEd[1(S≥K)

]
, (7.34)

given that the expectation of the indicative function is equal to the domestic risk-neutral probabilities
Ed
[
1(S≥K)

]
= Pd(ST ≥ K) and simplifying

f0 = e−rdTEd
[
ST 1(S≥K)

]
−Ke−rdTPd [ST ≥ K] . (7.35)

Taking each part of Equation (7.35) in tern.

Computation of the expectation term Ed
[
ST 1(S≥K)

]
, taking the properties of the logarithmic price

ST from Equation (4.2) on page 41 and the variance shift parameter gives

Ed
[
ST 1(S≥K)

]
= Ed

[
S0 exp

((
rd − rf −

1

2

(
σ2 + σ2

shift

))
T +

√
σ2 + σ2

shift zT (d)

)
1(S≥K)

]
.

(7.36)
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Letting Pd represent the domestic risk-neutral measure and Pf the foreign risk-neutral measure, the
derivative relating one risk-neutral measure to the other is given as

dPf
dPd

= exp

(√
σ2 + σ2

shift zT (d) −
1

2
(σ2 + σ2

shift)T

)
. (7.37)

Isolating the risk-neutral relationship

Ed
[
ST 1(S≥K)

]
= S0e

(rd−rf )TEd

[
exp

(√
σ2 + σ2

shift zT (d) −
1

2

(
σ2 + σ2

shift

)
T

)
1(S≥K)

]
, (7.38)

simplifying

Ed
[
ST 1(S≥K)

]
= S0e

(rd−rf )TEd

[
dPf
dPd

1(S≥K)

]
, (7.39)

relating the foreign expectations

Ed
[
ST 1(S≥K)

]
= S0e

(rd−rf )TEf
[
1(S≥K)

]
, (7.40)

given E
[
1(S≥K)

]
= P [S ≥ K], yields

Ed
[
ST 1(S≥K)

]
= S0e

(rd−rf )TPf [S ≥ K] . (7.41)

Substituting Equation (7.41) into (7.35) gives

f0 = S0e
−rfTPf [ST ≥ K]−Ke−rdTPd [ST ≥ K] , (7.42)

where the two risk-neutral probabilities, Pf and Pd, need to be calculated so that [ST ≥ K]. Noting
that the FX risk-neutrality comprises a choice of two bonds: the domestic bond Bd and the foreign
bond Bf , linked by the FX spot rate, the probabilities are computed from the risk-neutral measure
Pd [ST ≥ K] and Pf [ST ≥ K].

The domestic risk-neutral measure Pd incorporating the shift parameter is given as

ST = S0 exp

(√
σ2 + σ2

shift zT (d) +

(
rd − rf −

1

2

(
σ2 + σ2

shift

))
T

)
, (7.43)

substituting ST into Pd [ST ≥ K] gives

Pd

[
S0 exp

(√
σ2 + σ2

shift zT (d) +

(
rd − rf −

1

2

(
σ2 + σ2

shift

))
T

)
≥ K

]
, (7.44)

divide by S0

Pd

[
exp

(√
σ2 + σ2

shift zT (d) +

(
rd − rf −

1

2

(
σ2 + σ2

shift

))
T

)
≥ K

S0

]
, (7.45)

taking logarithms

Pd

[√
σ2 + σ2

shift zT (d) +

(
rd − rf −

1

2

(
σ2 + σ2

shift

))
T ≥ ln

(
K

S0

)]
, (7.46)
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Pd

[√
σ2 + σ2

shift zT (d) ≥ ln

(
K

S0

)
−
(
rd − rf −

1

2

(
σ2 + σ2

shift

))
T

]
, (7.47)

Pd

[
−
√
σ2 + σ2

shift zT (d) ≤ ln

(
S0

K

)
+

(
rd − rf −

1

2

(
σ2 + σ2

shift

))
T

]
, (7.48)

given z = ε
√
T where ε ∼ (0, 1) is a standardised normal random variable, noting that ε

√
T and −ε

√
T

have the same distribution by symmetry

Pd

[√
σ2 + σ2

shift ε
√
T ≤ ln

(
S0

K

)
+

(
rd − rf −

1

2

(
σ2 + σ2

shift

))
T

]
, (7.49)

Pd

ε ≤ ln
(
S0
K

)
+
(
rd − rf − 1

2

(
σ2 + σ2

shift

))
T√

σ2 + σ2
shift

√
T

 . (7.50)

Therefore domestic risk-neutral probability d2 is

d2 =
ln
(
S0
K

)
+
(
rd − rf − 1

2

(
σ2 + σ2

shift

))
T√

σ2 + σ2
shift

√
T

. (7.51)

And for the foreign risk-neutral measure Pf incorporating the shift parameter,

ST = S0 exp

(√
σ2 + σ2

shift zT (f) +

(
rd − rf +

1

2

(
σ2 + σ2

shift

))
T

)
, (7.52)

by symmetry the foreign risk-neutral probability d1 is

d1 =
ln
(
S0
K

)
+
(
rd − rf + 1

2

(
σ2 + σ2

shift

))
T√

σ2 + σ2
shift

√
T

. (7.53)

Given that Pd [ST ≥ K] = N(d1) and Pf [ST ≥ K] = N(d2) where N(d1) and N(d2) are the cumulative
distribution functions, substituting into Equation (7.42) gives the European call option valuation

fc0 = S0e
−rfTN(d1)−Ke−rdTN(d2) . (7.54)

Conversely the European put option valuation is given by

fp0 = Ke−rdTN(−d2)− S0e
−rfTN(−d1) . (7.55)
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This gives the modified FX option pricing model as

c = Se−rfTN(d1)−Ke−rdTN(d2) ,

p = Ke−rdTN(−d2)− Se−rfTN(−d1) ,

where d1 =
ln(S/K) + (rd − rf + 1

2(σ2 + σ2
shift))T√

σ2 + σ2
shift

√
T

and d2 =
ln(S/K) + (rd − rf − 1

2(σ2 + σ2
shift))T√

σ2 + σ2
shift

√
T

.

(7.56)

This model will be evaluated by comparing the performance of the risk reversals derived from this
model using the Dunis and Lequeux (2001) trading strategies to forecast the spot market against the
BSM market derived risk reversals. The premise being that an improved model should be used more
profitably within a directional forecasting context; that is the better model should afford improved
forecasting abilities.

7.2 Data Set and Methodology

Historic FX option pricing data is not readily available from the Eikon system. To compare the
performance of the new Modified FX option pricing model against the established Garman and
Kohlhagen (1983) modified BSM model requires the use of risk reversals. Using the daily FX

spot price data for the six currency pairs: EUR/USD, EUR/GBP, GBP/USD, USD/JPY, EUR/JPY and
GBP/JPY, the corresponding call and put option price will be calculated using the modified FX

option pricing model. These option prices will then be used to determine alternative synthetic risk
reversal prices. The forecasting performance of the synthetic risk reversals will be compared to the
historic BSM risk reversals from the Eikon system to determine which more accurately forecast the
movement and direction of exchange rates.

The Refinitiv Eikon trading system, formerly Thomson-Reuters, provided the data for this study.
The data set covers the 10 year period from July 22nd, 2010, to February 19th, 2020 for EUR/GBP,

EUR/USD, GBP/USD, USD/JPY and EUR/JPY consisting of 2,500 observations and the 7 years from
March 12th, 2013, to February 19th, 2020 for GBP/JPY consisting of 1,813 observations. The data
comprises the top four currencies by percentage share of average daily turnover as per the April 2019

BIS survey, see Table 3.3 on page 31. The related currency pairs consists of EUR/USD, EUR/GBP,

GBP/USD, USD/JPY, EUR/JPY and GBP/JPY, see Table 3.2 on page 31. The exchange rate and risk
reversal price history comprises the best bid, mid and ask quotes and time-stamped to the daily
closing price. No information as to the transaction size or trading parties is given. The corresponding
LIBOR rates for each of the four currencies covering the sample period were downloaded from
http://iborate.com.

Volatility is a measure of the uncertainty about the returns and defined as the standard deviation
of the return in one year when the return is expressed using continuous compounding. This cannot
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be observed and has proved to be the most problematic element of the BSM model which assumes
volatility is constant. Market practitioners attempt to address this limitation by inverting the model
to calculate the implied volatility. These are volatilities implied by option prices observed in the
market and used to price risk reversals.

A risk reversal is a commonly used term in the FX markets and refers to:

i. An option strategy combining the simultaneous purchase of out-of-the-money calls (puts) with
the sale of out-of-the-money puts (calls). The option will have the same expiration date and
similar deltas.

ii. A market view on both the underlying currency and implied volatility.

The risk reversal is founded on the limitations of the BSM option pricing model. The BSM model
assumes a constant variance and that the price returns are normally distributed. Given that prices
are in fact skewed and leptokurtic, the underlying currency will trade at extreme prices from
the current spot market more frequently than a normal distribution would suggest, referred to
as fat-tails.

If more price action occurs at these extreme levels than suggested by the BSM model, market traders
mark the implied volatility higher to account for the increased probability of the underlying trading
in the fat-tails region. This results in the implied volatility being higher for out-of-the-money and
in-the-money options than for at-the-money options. If there is no bias in the market expectations
of the underlying price the volatility would be symmetrical around the at-the-money volatility,
commonly referred to as the volatility smile. When bias is introduced due to demand and supply
considerations along with market expectations, this pushes up the volatility for in-the-money calls
and out-of-the-money puts relative to in-the-money puts and out-of-the-money calls. This is referred
to as the volatility skew.

Risk reversals express the difference in implied volatility of a 25-delta call and 25-delta put option

RR25 = σcall,25 − σput,25 . (7.57)

If the currency is expected to appreciate, calls would be favoured over puts and the purchaser of
the call would pay a higher volatility relative to puts.

Consider a different view of volatility to current market practice. Whereas risk reversals are priced
by differencing the implied volatility, assume that the volatility is the annualised standard deviation
for the entire sample period, adjusted for the parameter shift due to the stability of the N normal
distributions of the Kon (1984) model. Therefore the pricing of the risk reversal derived from
my modified FX option pricing formula is formed by differencing the option price rather than
differencing the implied volatilities. The delta of an option measures the amplitude of the change of
its price as a function of the change in the price of its underlying asset. 25-delta risk reversals are
priced by differencing out-of-the-money 25-delta call and put options where 50-delta represents an
at-the-money strike price. The strike price K for the modified option is set such that the delta for a
call option is δ = N(d1) = 0.25 and for a put option δ = −N(−d1) = −0.25 where d1 is as per Equation
(7.56) for the purpose of calculating risk reversals for the modified FX option pricing model.
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Empirical Approaches to Risk Reversal Exchange Rate Forecasting

The two most common trading assumptions made by practitioners using risk reversals as a source
of information to forecast the change in the spot foreign exchange markets are:

i. Risk reversals are directional trend indicators.

There are two possible strategies where risk reversals are used as a directional indicator of the price:

a. Comparing the 21-day moving average of the risk reversal value to the current risk reversal value.
Thereby a buy indicator occurs if the current value cuts the 21-day moving average from below,
moving above moving average level. Conversely a sell signal is generated if the current value cuts
the 21-day moving average from above, moving below moving average level.

b. Comparing the sign of the risk reversal whereby a negative sign generates a sell signal and a
positive sign a buy signal.

FIGURE 7.1: Risk Reversal Direction Trend Indicators

(a) Risk Reversal 21-Day Moving Average (b) Risk Reversal Sign Comparison

ii. Risk reversals are early trend reversal indicators.

This requires devising two mean reverting strategies by separating the series into positive and
negative risk reversals. The positive series is used to create an upper band equal to the mean plus
one standard deviation. The negative series is used to create a lower band equal to the mean minus
one standard deviation. If the risk reversal moves above the upper band this generate a sell signal
until the risk reversal moves below the upper band by moving into the neutral zone between the
two bands. Conversely a risk reversal below the lower band is a signal to buy until the risk reversal
moves above this band into the neutral zone. The mean and standard deviation for each of the
strategies are determined by:

a. Estimating the mean and standard deviation on a cumulative basis.

b. Sampling the mean and standard deviations on a rolling 21-day basis.
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FIGURE 7.2: Risk Reversal Early Trend Reversal Indicators

(a) Risk Reversal Cumulative Bands (b) Risk Reversal 21-day Moving Average Bands

The returns from these technical trading strategies as applied to the modified FX option pricing
model, see Equation (7.56), and the BSM model will be compared to a simple 21-day moving average
on the spot exchange rate itself. This is one of the oldest and most widely used methods by market
practitioners: Dunis (1989). The simple rule states that when the current spot rate penetrates the
21-day moving average from below a buy signal is generated. Conversely if the spot rate penetrates
the moving average from above then this generates a sell signal. When comparing the modified FX

option pricing model, the BSM model and the 21-day moving average the performance criterion is
founded on the premise that the better model will more accurately reflect the information contained
in the market and thus more precisely forecast the foreign exchange spot market directional changes.

7.3 Results

Dunis and Lequeux (2001) suggested that market practitioners anticipated a correlation between
risk reversals and lagged values of the exchange rate changes. To verify this correlation Dunis and
Lequeux (2001) conducted a Granger causality test to determine if a causal link existed between
both series. The objective is to investigate the existence of a lagged relationship between the BSM

risk reversal series and the FX spot rates series. This relationship underlines the possibility of using
the risk reversal to forecast the directional change of foreign exchange rates. The findings of the
one-month risk reversals contradicted expectations suggesting there was no causal link, see Table
7.1.

TABLE 7.1: Pair-Wise Granger Causality Test: Risk Reversal Do Not Granger Cause Spot Rates

EUR/GBP EUR/USD GBP/USD USD/JPY EUR/JPY GBP/JPY

F-Statistic 0.5804 2.1932 19.4392 0.2267 0.0130 0.6621
Probability 0.5597 0.1118 0.0000 0.7972 0.9871 0.5159
Null Hypothesis: Accept Accept Reject Accept Accept Accept

EViews 11SV

From Table 7.1 the Granger causality test does not reject the null hypothesis that risk reversals do
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not Granger cause spot rates. The Granger test rejects a causal link from the risk reversal to the
spot exchange rate changes for all currencies with the exception of GBP/USD. This is in line with
expectations with the currency option market being only 15% of the FX spot market: Bank for
International Settlements (BIS) 2019. The results are in agreement with the findings of Dunis and
Lequeux (2001) in accepting the null hypothesis and rejecting a causal link from the risk reversals
to the spot rate changes. The findings for a causal link from the spot exchange rates to the risk
reversals however is not as clearly defined; see Table 7.2.

TABLE 7.2: Pair-Wise Granger Causality Test: Spot Rates Do Not Granger Cause Risk Reversals

EUR/GBP EUR/USD GBP/USD USD/JPY EUR/JPY GBP/JPY

F-Statistic 0.0291 24.2292 5.4528 1.5152 1.6440 6.4850
Probability 0.9714 0.0000 0.0043 0.2200 0.1934 0.0016
Null Hypothesis: Accept Reject Reject Accept Accept Reject

EViews 11SV

The foreign exchange rate is the price of the underlying asset that determines the value of the
currency option. The association between the underlying asset price and the option value would
suggests a causal link from the spot rate to the risk reversal. From Table 7.2 the Granger causality
test does not reject the null hypothesis that spot rates do not Granger cause risk reversals for
EUR/GBP, USD/JPY and EUR/JPY. Conversely the Granger test rejects the null hypothesis, suggesting
a causal link from the spot exchange rates to the risk reversals for EUR/USD, GBP/USD and GBP/JPY.
This causal link suggests that the spot rate does lead the currency option price for EUR/USD,

GBP/USD and GBP/JPY as expected, but does not suggest a causal link for EUR/GBP, USD/JPY and
EUR/JPY.

However these finding in themselves do not conclusively confirm there is, or is not, embedded
information that could assist in determining the future direction of exchange rates and an empirical
technical analysis will be undertaken.

Table 7.3 shows the summary statistics of the performance that would have been obtained by using
the spot rate 21-day moving average strategy and applying it to the six exchange rates for which
the risk reversal strategies are being evaluated.

TABLE 7.3: FX Spot Rates 21-Day Moving Average

EUR/GBP EUR/USD GBP/USD USD/JPY EUR/JPY GBP/JPY

Annualised Return 18.41% 18.57% 18.04% 20.34% 21.80% 22.56%
Annualised Volatility 5.74% 5.70% 5.55% 5.89% 6.94% 6.82%
Return/Volatility Ratio 3.21 3.26 3.25 3.45 3.14 3.31
Maximum Daily Loss −1.89 % −2.08 % −1.52 % −1.67 % −2.28 % −2.60 %
Maximum Daily Profit 6.00% 3.03% 2.98% 3.47% 4.18% 2.78%
Maximum Cumulative Loss −1.58 % −3.28 % −1.96 % −1.92 % −2.52 % −1.57 %
Number of Observations 2,480 2,480 2,480 2,480 2,480 1,792
% Winning Days 29.88% 29.07% 29.44% 30.56% 30.48% 30.47%
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The Annualised Return is the cumulative log-return multiplied by 252 trading days over the number
of observations. The Annualised Volatility is the standard deviation of the log-returns multiplied
by the square root of 252 trading days. The Maximum Daily Loss/Profit is the lowest and highest
daily log-return from the sample period. The Maximum Cumulative Loss is the greatest cumulative
daily loss for successive periods before reversing the trend. Using a spot rate 21-day moving average,
see Table 7.3, would have proved a profitable strategy for all six currency pairs during the period
investigated. The profitability of the directional trend indicator strategy will be used as a benchmark
to gauge the economic value of the four trading strategies based on risk reversals below.

TABLE 7.4: BSM FX Risk Reversals 21-Day Moving Average

EUR/GBP EUR/USD GBP/USD USD/JPY EUR/JPY GBP/JPY

Annualised Return 1.17% 10.94% 6.36% 2.42% −0.45 % 8.91%
Annualised Volatility 5.88% 6.05% 6.47% 5.95% 6.96% 8.65%
Return/Volatility Ratio 0.20 1.81 0.98 0.41 −0.06 1.03
Maximum Daily Loss −1.89 % −1.77 % −8.40 % −2.82 % −2.83 % -12.27%
Maximum Daily Profit 6.00% 3.03% 2.98% 3.17% 2.59% 3.74%
Maximum Cumulative Loss −3.21 % −3.28 % −2.74 % −3.30 % −3.58 % −3.99 %
Number of Observations 2,480 2,480 2,480 2,480 2,480 1,792
% Winning Days 25.93% 29.23% 27.02% 24.03% 24.88% 28.13%

The results in Table 7.4 show that the BSM risk reversal 21-day moving average strategy has
generated significantly lower returns than that achieved by the simple spot rate 21-day moving
average across all six exchange rates with EUR/JPY generating a negative return. The results
suggest that there is no advantageous lag in the spot prices and the BSM risk reversal rates that can
profitably be used within a directional trading strategy. These results are in line with expectations.
From the Triennial Survey for the three-year period, 2016-2019 the Bank for International Settlements
(BIS) reports that the FX spot market was worth $1.99 trillion a day in 2019 when compared with
the currency option market which was only worth $294 million a day in 2019. There is far more
information contained in the FX spot market than can be conveyed by the currency option market.
Contrast the performance of the BSM risk reversals with the statistics of the alternative directional
strategy using the modified risk reversals in Table 7.5 below.

TABLE 7.5: Modified FX Risk Reversals 21-Day Moving Average

EUR/GBP EUR/USD GBP/USD USD/JPY EUR/JPY GBP/JPY

Annualised Return -14.38% -13.70% -18.12% -16.36% −2.31 % -23.58%
Annualised Volatility 5.20% 5.75% 6.32% 6.26% 0.39% 8.89%
Return/Volatility Ratio −2.76 −2.38 −2.87 −2.61 −5.95 −2.65
Maximum Daily Loss −2.01 % −2.41 % −8.40 % −3.77 % −0.69 % -12.27%
Maximum Daily Profit 1.75% 2.51% 1.90% 2.22% 0.00% 3.74%
Maximum Cumulative Loss −3.21 % −3.70 % −3.16 % −4.10 % −0.79 % −5.11 %
Number of Observations 2,480 2,480 2,480 2,480 2,480 1,792
% Winning Days 19.19% 20.52% 20.24% 19.07% 0.00% 19.14%
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Table 7.5 shows that the modified risk reversal 21-day moving average strategy has generated
significantly lower returns than the spot rate and the BSM risk reversal 21-day moving average across
all six exchange rates. The modified risk reversals returned a negative gain for every exchange rate
over the sample period. Although the modified 21-day moving average model appears to perform
significantly worse than the BSM 21-day moving average this is a failing of the trading strategy
rather than an indication of the performance of the model. The trading strategy is dependent
on alternating positive and negative risk reversal values crossing the 21-day moving average to
generate a buy and sell signal. This strategy fails and becomes ineffective for prolonged negative
values whereby no buy indicators are generated and hence the strategy does not generate a positive
return. This problem is further compounded when considering the statistics of the alternative
directional strategy whereby the sign actually generates a buy or sell signal, see Tables 7.6 and 7.7,
which further cast doubts of the potential directional benefits of risk reversals.

TABLE 7.6: BSM FX Risk Reversals - Sign Comparison

EUR/GBP EUR/USD GBP/USD USD/JPY EUR/JPY GBP/JPY

Annualised Return −0.61 % 0.20% 0.20% 0.57% −0.13 % 0.18%
Annualised Volatility 5.41% 2.87% 1.76% 3.24% 0.97% 1.97%
Return/Volatility Ratio −0.11 0.07 0.11 0.18 −0.13 0.09
Maximum Daily Loss −1.87 % −1.39 % −1.57 % −2.05 % −1.10 % −2.08 %
Maximum Daily Profit 1.72% 2.00% 1.92% 1.44% 0.87% 1.35%
Maximum Cumulative Loss −2.76 % −1.36 % −0.90 % −2.29 % −1.11 % −0.90 %
Number of Observations 2,500 2,500 2,500 2,500 2,500 1,812
% Winning Days 20.44% 0.28% 0.48% 1.72% 0.00% 2.37%

Again the BSM risk reversal performance is quite poor, see Table 7.6. For the BSM risk reversal
sign comparison strategy all the exchange rates underperformed when compared with the BSM

risk reversal 21-day moving average strategy and substantially underperformed against the spot
rate 21-day moving average strategy with EUR/GBP and EUR/JPY generating negative returns. The
poor performance is an indicator of the failing strategy rather than the information contained in the
currency option. The failings of the sign comparison strategy are exposed when the risk reversals
maintain a negative sign for prolonged periods, thereby voiding a buy signal. This failing is very
evident in the modified risk reversal sign comparison strategy, see Table 7.7. The statistics highlight
a fundamental weakness of the trading strategy that undermines this concept.
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TABLE 7.7: Modified FX Risk Reversals - Sign Comparison

EUR/GBP EUR/USD GBP/USD USD/JPY EUR/JPY GBP/JPY

Annualised Return 0.00% 0.00% 0.00% 0.00% −0.01 % 0.00%
Annualised Volatility 0.00% 0.00% 0.00% 0.00% 0.40% 0.00%
Return/Volatility Ratio 0.00 0.00 0.00 0.00 −0.02 0.00
Maximum Daily Loss 0.00% 0.00% 0.00% 0.00% −0.69 % 0.00%
Maximum Daily Profit 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Maximum Cumulative Loss 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Number of Observations 2,500 2,500 2,500 2,500 2,500 1,812
% Winning Days 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

For the modified risk reversal sign comparison strategy, see Table 7.7, the results were inconclusive
and the strategy ineffective. The strategy reported no returns for EUR/GBP, EUR/USD, GBP/USD,

USD/JPY and GBP/JPY due to the risk reversal signs being negative for the entire sample period
and negative for a vast majority of the period for EUR/JPY. The prolonged negative signs resulted
in no buy indicators from this method and hence no returns were generated. The sign comparison
method seems to be highly sensitive to the data that can render it completely ineffective if there
are no alternates in the time series. Contrast these strategies with the mean reverting contrarian
approach below.

TABLE 7.8: BSM FX Risk Reversals - Cumulative Upper and Lower Bands

EUR/GBP EUR/USD GBP/USD USD/JPY EUR/JPY GBP/JPY

Annualised Return 1.00% −2.11 % −2.63 % 0.05% −2.30 % −3.88 %
Annualised Volatility 7.46% 11.83% 13.42% 7.34% 9.94% 17.85%
Return/Volatility Ratio 0.13 −0.18 −0.20 0.01 −0.23 −0.22
Maximum Daily Loss −1.87 % −0.33 % 0.00% −0.54 % 0.00% −0.67 %
Maximum Daily Profit 1.99% 2.06% 2.35% 1.51% 1.98% 3.74%
Maximum Cumulative Loss −3.49 % −3.58 % -11.83% −3.13 % −4.33 % -15.78%
Number of Observations 2,500 2,500 2,500 2,500 2,500 1,812
% Winning Days 38.76% 0.56% 0.00% 0.84% 0.00% 0.83%

Table 7.8 shows that the BSM cumulative upper and lower bands performance is as poor as the sign
comparison strategy and significantly worse than the 21-day moving average. All the exchange rates
substantially underperformed the moving average method with EUR/USD, GBP/USD, EUR/JPY and
GBP/JPY realising negative returns. This was due to prolonged periods of neutral pricing within the
bands and lesser periods crossing the upper band trigging a sell indicator and only very infrequent
periods crossing the lower band to generate a buy signal. This appears to be a rudimentary trading
strategy that is rendered ineffective for prolonged periods of neutral pricing within the upper and
lower bands. Compare the performance of the modified cumulative upper and lower bands strategy
outlined in Table 7.9.
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TABLE 7.9: Modified FX Risk Reversals - Cumulative Upper and Lower Bands

EUR/GBP EUR/USD GBP/USD USD/JPY EUR/JPY GBP/JPY

Annualised Return 1.54% 0.48% 1.58% 4.78% −0.18 % 6.76%
Annualised Volatility 8.46% 11.39% 5.67% 9.58% 0.31% 9.57%
Return/Volatility Ratio 0.18 0.04 0.28 0.50 −0.58 0.71
Maximum Daily Loss 0.00% 0.00% 0.00% 0.00% −0.18 % 0.00%
Maximum Daily Profit 1.99% 1.64% 1.33% 3.47% 0.00% 4.16%
Maximum Cumulative Loss −3.81 % −3.50 % −2.11 % −4.93 % −0.19 % −5.06 %
Number of Observations 2,500 2,500 2,500 2,500 2,500 1,812
% Winning Days 0.00% 0.00% 0.00% 0.00% 0.44% 0.00%

The modified cumulative upper and lower bands strategy performed better than the BSM model with
EUR/GBP, EUR/USD, GBP/USD, USD/JPY and GBP/JPY generating a positive return and outperforming
the modified 21-day moving average. However the strategy performed substantially below that of
the spot rate 21-day moving average. It is clear that the FX spot market affects the currency option
market raising the question whether the information in the currency option market can drive the
spot market price? For the BSM and modified cumulative upper and lower band strategy, see Tables
7.8 and 7.9, the data stayed within the neutral bands for prolonged periods negating any buy and
sell signals. This strategy resulted in long periods of no trading activity rendering it ineffective.

TABLE 7.10: BSM FX Risk Reversals - 21 Day Moving Average Upper and Lower Bands

EUR/GBP EUR/USD GBP/USD USD/JPY EUR/JPY GBP/JPY

Annualised Return 0.94% −2.00 % −2.39 % 0.32% −2.03 % −3.94 %
Annualised Volatility 7.46% 11.98% 13.22% 7.27% 9.72% 17.89%
Return/Volatility Ratio 0.13 −0.17 −0.18 0.04 −0.21 −0.22
Maximum Daily Loss −1.87 % −0.33 % 0.00% −0.54 % 0.00% −0.67 %
Maximum Daily Profit 1.99% 2.06% 2.35% 1.51% 1.98% 3.74%
Maximum Cumulative Loss −3.49 % −3.58 % -11.83% −3.13 % −0.18 % -15.78%
Number of Observations 2,480 2,480 2,480 2,480 2,480 1,792
% Winning Days 38.91% 0.56% 0.00% 0.85% 0.00% 0.73%

From Table 7.10 it can be seen that the poor performance of the BSM 21-day moving average
upper and lower bands strategy is in line with results seen in the cumulative upper and lower bands
strategy. Both of the upper and lower bands strategies performed as poorly as the sign comparison
strategy and significantly worse than the 21-day moving average. All these strategies are highly
sensitive to prolonged periods of no alternates in the time series, rendering them ineffective. For
the BSM 21-day moving average upper and lower bands, see Table 7.10, all the exchange rates
substantially underperformed the moving average method with EUR/USD, GBP/USD, EUR/JPY and
GBP/JPY realising negative returns. Although the modified 21-day moving average upper and lower
bands strategy outperformed the BSM model with EUR/GBP, GBP/USD, USD/JPY and GBP/JPY

generating a positive return, see Table 7.11, it was still subject to the same frailty in the trading
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strategy experienced by the cumulative upper and lower bands and the sign comparison strategies,
see above.

TABLE 7.11: Modified FX Risk Reversals - 21 Day Moving Average Upper and Lower Bands

EUR/GBP EUR/USD GBP/USD USD/JPY EUR/JPY GBP/JPY

Annualised Return 1.70% −0.05 % 1.23% 4.74% −0.19 % 4.77%
Annualised Volatility 8.48% 11.69% 5.56% 9.56% 0.31% 9.18%
Return/Volatility Ratio 0.20 0.00 0.22 0.50 −0.61 0.52
Maximum Daily Loss 0.00% 0.00% 0.00% 0.00% −0.18 % 0.00%
Maximum Daily Profit 1.99% 1.64% 1.33% 3.47% 0.00% 2.78%
Maximum Cumulative Loss −3.81 % −3.50 % −2.11 % −4.93 % −0.20 % −5.06 %
Number of Observations 2,480 2,480 2,480 2,480 2,480 1,792
% Winning Days 0.00% 0.00% 0.00% 0.00% 0.44% 0.00%

The performance of the modified 21-day moving average upper and lower bands was subject to
prolonged periods of neutral pricing within the bands limiting the occasion of triggering a buy or
sell signal in the same way that detrimentally effected the BSM version, rendering the outcome
inconclusive.

For the BSM pricing model the contrarian strategy was outperformed by both the directional trend
strategies and the modified contrarian strategies with the FX spot rate directional indicator using
the 21-day moving average generating the highest returns. However, since both of the contrary
strategies and the sign comparison directional strategy are dependent on the same fundamentals
they are all subject to the same sensitivity in the data that undermines trading concepts.

The trading strategies outlined by Dunis and Lequeux (2001) appear to be insufficient in evaluating
the performance of the option pricing models. Although the directional strategies outperformed the
contrarian strategies in generating the highest returns for the spot rate 21-day moving average and
then the BSM 21-day moving average, the strategies are sensitive to the form of the time series. Data
with prolonged negative periods results in no trading activity. The strategies have also resulted in
the trend indicators generating lower or even negative returns with periods of no winning days,
which is not credible. All the strategies seem to be overly sensitive to the data which at best can
render them unreliable and at worst ineffective methods.

Although the modified model outperformed the BSM model in the contrarian strategies this cannot
be relied upon as conclusive due to the sensitivity of the trading strategies to the sign of the data.
This sensitivity to the sign of the data rendered the trading strategy ineffective.

7.4 Conclusions

This chapter has shown that following the Black and Scholes (1973) methodology and the associated
work of Garman and Kohlhagen (1983) under the assumption that the spot price process follows
the Kon (1984) parameter shifted modified geometric Brownian motion an alternative FX option
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pricing model is obtained. This modified FX option pricing model addressed the issues of skewness
and kurtosis in the return distribution that limited the performance the market leading BSM pricing
model.

This thesis focused on the main variable for which Black-Scholes gives results that differ widely
from market data: implied volatility. The implied volatility is the fundamental pricing method
for foreign exchange options which are quoted in a significantly different way to other derivatives.
The discrepancies observed between market and theoretical prices are pronounced in the different
implied volatilities according to the exercise price (smile and skew) and maturities (term structure).
The option’s relative value can be compared by their implied volatilities. This comparison is of
such importance that professional traders often quote the value of options in terms of its implied
volatility rather than its premium. The BSM risk reversal options are priced by differencing the
implied volatility of a call and put option. The thesis has shown that the risk reversals derived
from the alternative FX option pricing model, differencing the price rather than implied volatility
of the alternative call and put options, under the assumption that the volatility for the modified
risk reversals was the annualised standard deviation for the entire sample period, adjusted for
the parameter shift due to the stability of the N normal distributions, yielded an option price
significantly different from that of the BSM risk reversals.

The thesis utilised the FX trading strategies employed by practitioners to compare the forecasting
performance of the market established BSM derived risk reversals with that of the risk reversals
derived from the parameter shifted modified FX model. The performance criterion is founded
on the premise that the better model will more accurately reflect the information contained in the
market and thus more precisely forecast the foreign exchange spot market directional changes. It was
anticipated that the data would show a strong contemporaneous relationship between variations in
the risk reversals and the underlying spot series. However the results were in line with expectations
and the Granger causality test. Where the strategy was successfully applied the modified FX pricing
model eclipsed the performance of the BSM model using the trend reversal strategies. However, the
results highlighted a fundamental weakness of the practitioner trading strategies that voided trading
indicators from occurring: prolonged periods of negative signs negating a buy signal and conversely
prolonged periods of positive signs negating a sell signal. If the time series does not alternate
the sign of the risk reversal, this renders the trading method redundant. Consequently both the
directional and the contrary trading strategies can be completely undermined by a unidirectional
time series.

To examine the integral assumption of the Black and Scholes (1973) formula: that the stochastic
price process follows a geometric Brownian motion, this thesis has addressed the known biases
and limitations of the influential Black-Scholes model. Rather than append a correction to the BSM

model a suitable transformation was identified and applied to the data. This transformation enabled
the extrapolation of greater information regarding the distribution of returns. The transformation
ensured that the data more closely adhered to the assumption of normality that was fundamental
to the BSM derivation. Following the BSM methodology, the derived alternative FX option pricing
model was a significant development. This thesis demonstrated the performance enhancements
of the alternative option pricing model. With improved transformations and possible further
developments regarding a more accurate appraisal of the N normal distributions, this model can be
elevated to an even greater extent.
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Chapter 8

Conclusion

8.1 Significance

This thesis developed an alternative, closed form, foreign exchange (FX) option pricing model based
on the Black and Scholes (1973) and R. C. Merton (1973) (BSM) methodology. Under the assumption
that the BSM approach was sufficient in pricing FX options and the known biases and limitations
associated with it are due to the data not conforming to the assumption of normality, a suitable
transformation of the data was identified that complied with the normality assumption of geometric
Brownian motion, on which the BSM model is based.

The thesis added the proviso that market practitioners must be able to use the pricing model in
the FX option market. This approach was achieved by dividing the undertaking into three sections,
namely:

i. Defining the functionality of the high frequency FX market in order to identify the attributes
that explain the FX market spot rates: Chapters 2 and 3.

ii. Deriving a stochastic equation that conforms to the BSM assumption of normality and represents
the system of attributes that explain the FX market: Chapters 4 and 5.

iii. Applying the BSM methodology to the fundamental equation describing the FX market in
deriving a closed form option pricing model. The alternative FX option pricing model was then
evaluated against the market leading BSM model in forecasting the directional movements in
the exchange rate: Chapters 6 and 7.

8.2 Findings and Implications

This thesis took the view that market professionals quote prices based on the microstructure
variables of order flow and bid-ask spread and the equilibrium restoring triangulation. This view
significantly diverted from the established expectations that prices are driven by macroeconomic
fundamentals such as inflation and interest rates. Under the assumption that the consequence of
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market practitioners trading in the FX market defines the market operation, this thesis advocated
a microstructure approach, as opposed to a macroeconomic approach, as the appropriate course
of action to explain the exchange rate dynamics. Chapter 2 of the thesis demonstrated that
the fundamentals of the market, when combined with triangulation, operated as a transmission
mechanism conveying information across a network of practitioners that made up the FX market
spot price. Consequently the market prices are determined by the circular information flow conveyed
from institutional clients to traders, followed by inter-trader transactions, before returning the
information flow to the institutional clients. This thesis posits that the transmission mechanisms
for dissipating pricing information comprises of the microstructure variables of order flow, bid-ask
spread and triangulation acting in concert. This thesis distinctly proposes that each of the elements
conveys information unique to its own function; however, collectively they combine to operate as
a system of attributes describing the market and arriving at the quoted spot price. Chapter 2
concludes that the FX spot market should be viewed in its entirety as operating as a system of
attributes and not taken as separate elements.

Under the proviso that the microstructure approach explains the FX market, the explanatory factors
of each of the elements were considered in Chapter 3. Whereas order flow was simply the net buying
or selling pressure and triangulation an arbitrage equaliser, the constituents of the bid-ask spread:
price discreteness and price clustering required further investigation.

In evaluating the granularity of FX prices the thesis concluded that the price discreteness element of
the transmission mechanism was efficient and could not be enhanced by increasing the quote size by
an extra digit. The extra level of complexity introduced by an extra digit was found to more than
offset any potential benefits. Further, no evidence was found to suggest that increasing the price
quotes from five to six digits would impact the size of the spread. The thesis concluded that the
information conveyed by price discreteness had been factored into an efficient trading mechanism.

Whereas the test for discreteness was definite, the test for price clustering was not as emphatic. The
thesis identified clear evidence of price clustering in the exchange rates considered. However, there
was no indication that this was material and was accounted for as a natural occurrence resulting
from a compromise between increased accuracy in the price quotes and longer prices. The thesis
concluded that even though discreteness and clustering were present in the quotes, these attributes
have been assimilated into an efficient information transmission mechanism determining the FX spot
price. Thus this thesis advocates an alternative view of the FX market. The thesis proposes that
the microstructure attributes of order flow, bid-ask spread and triangulation operate as systemic
elements making up the quoting process. Any model of the FX market needs to account for these
attributes and their interdependence in defining the information transmission mechanism to explain
how the market operates.

Having determined that the FX market is best described as a system of information transmission
attributes, Chapter 4 obtained a stochastic price process that represented this system and adhered
to the BSM assumption of normality. The thesis examined models that offered an alternative to the
normal distribution of returns. Under the condition that the distribution of returns is fat-tailed,
the normal distribution is a poor approximation. The thesis identified that the true distribution
of returns comprises a symmetrical distribution with fat-tails, higher peaked centre and hollow
in-between when compared to a normal distribution. The finite second moment: a well behaved
standard deviation, suggests that the distribution will have some properties which non-normal stable
distributions do not have. This thesis concluded that a class of fat-tailed distributions with finite
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second moments will give a better approximation of the distribution of price returns. From the
models considered the thesis found that the discrete mixture of normal distributions suggested by
Kon (1984) was sufficient to incorporate the system of attributes defining the normal distribution
of returns. The model advocated that the actual distribution comprised of N normal distributions,
each attributable to exogenous macro and micro information operating as system conveying market
information. The thesis concluded that the model could be adapted to describe the information
transmission mechanism in modelling the FX market.

Having identified a stochastic pricing model to account for the FX market, Chapter 5 resolved to
explain how the combined elements of the transmission mechanism created a skewed and leptokurtic
distribution of returns. Under the assumption that if the number of N normal distributions could be
identified, the thesis advocated that the stable, modified distribution would be normal by accounting
for the number and size of the N shifts in the parameters. This was verified by partitioning the
data by year and day of the week which returned a normal distribution of returns. The inference
drawn from this thesis is that the true mixture of normal distributions is more complex than a
simple partition. Notwithstanding this limitation the models espoused by this thesis were sufficient
to explain the behaviour and distribution of the foreign exchange market. The thesis concluded
that the stochastic price process derived here was a suitable transformation of the data to ensure
the modified geometric Brownian motion was sufficient to apply the BSM method in deriving an
alternative FX option pricing model.

Under the assumption that the description of the FX market proposed by the discrete mixture of
normal distributions was adequate, this thesis proposed an alternative to the standard geometric
Brownian motion diffusion process. Chapter 6 modified this diffusion process, which the BSM

is based upon, incorporating a parameter shift that transformed the distribution of returns. As
a consequence of accounting for the shift variable the distribution was adjusted, adhering to the
normality assumption. The Black and Scholes (1973) methodology was then applied to the modified
fundamental equation in Chapter 7. This thesis successfully derived an alternative FX option pricing
model founded on a discrete mixture of normal distributions. The parameter shifted geometric
Brownian motion was the basis of the derivation of an alternative FX option pricing formula that
orientated the data around the assumption of normality rather than append to the equation to
compensate for the limitations. The modified FX formula was then used to derive risk reversal
options, differenced on price, and compared to the market defined BSM risk reversals, differenced
by implied volatility. Under the assumption that risk reversals are used by practitioners to forecast
the movement of exchange rates the corresponding trading strategies were applied to each model.
The performance of the modified FX option model was compared to the market standard BSM

model under the proviso the better model will more accurately forecast exchange rate movements.
The results were very encouraging. The risk reversals derived from the modified FX option pricing
model outperformed the BSM derived risk reversals for both trend reversal strategies, although the
performance was not as definite under the direction trend indicator strategies. The thesis concludes
that the alternative FX option pricing model is credible and can be used by market practitioners
to price FX options. The approach undertaken of transforming the data to adhere to the normality
assumption of the BSM model rather than append a correcting feature to it was proper and correct.
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8.3 Limitations and Further Extensions

The alternative FX option pricing model proposed by this thesis is a significant step in addressing
the known limitations of the BSM formula. However, as for any model, the approach adopted here
is a simplified version of reality which is subject to limitations. The first of these is the view that
the microstructure variables: order flow, bid-ask spread and triangulation, are the absolute and
sufficient determinants in defining the FX market at the exclusion of macroeconomic fundamentals.
The reality is likely to be a combination of the two approaches. Thus the system describing the FX

market is probably a function of more than the three variables advocated here and is an area that
is suitable for supplementary research. Further, when stating that the constituents of the bid-ask
spread: price discreteness and price clustering, are elements of an efficient market this is simply the
weak form of efficiency pertaining to the information contained in past prices. The transmission
mechanism does not address all the publicly available information or all the information affecting
the FX spot price.

The second area relates to the explanation offered by the Kon (1984) discrete mixture of normal
distribution model for the cause of the skewed and leptokurtic distribution of returns. Simply
partitioning the data by year and day of the week to account for normality might appear to be
trivial. To identify the true number of N normal distributions will require further interrogation and
presents an opportunity for future research.

The third area relates to simplistic view of the information inherent in option prices and how this
information is interpreted. The option trading strategies deployed were variants of the spot trading
strategies whereas a forward trading strategy might have been more appropriate. The fact that
options are transacted in the spot market today and mature at some future date written into the
contract, they inherently contain information about the market direction. Currency options cannot
be used in forecasting exchange rate movements unless the FX option the risk reversal is based upon
is priced more accurately. Intuitively a lagged relationship does exist between risk reversals and
spot rates, although this invites further research in determining how that relationship can be used
to forecast the directional changes of exchange rates. What must follow from this research is to
identify how this information can be used in affording a profitable trading opportunity.
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Appendix A

Data Set and Detailed Test Statistics

A.1 Variable Definition and Data Set

Abbreviations
EUR Euro
GBP British Pound Sterling
JPY Japanese Yen
USD US Dollar

A.2 Bank for International Settlements (BIS) Data Set

The sample period covers the three months from 12th September 2018 to 12th December
2018 for the top four currencies by volume and respective currency pairs based on the
percentage share of average daily turnover in the Bank for International Settlements (BIS)

April 2019 survey and consists of EUR/USD, EUR/GBP, GBP/USD, USD/JPY, EUR/JPY and GBP/JPY.
It contains the FX limit order price data for the six currency pairs from the Eikon electronic
interdealer market. The limit orders comprise the best bid and ask limit orders per second,
and time-stamped to the nearest second. No information as to the transaction size or trading
parties is given.
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A.2.1 Summary Statistics For FX Pip Spreads per Second

TABLE A.1: Currency Pairs - Pip Spread Statistics

EUR/GBP EUR/USD GBP/USD USD/JPY EUR/JPY GBP/JPY

Mean 3.4624 2.7314 3.1789 2.2613 3.7013 3.7853
Median 4.0000 3.0000 4.0000 2.0000 4.0000 5.0000
Maximum 16.0000 11.0000 23.0000 8.0000 8.0000 12.0000
Minimum 1.0000 1.0000 1.0000 0.9000 1.0000 1.0000
Std. Dev. 1.5066 1.3649 1.5535 1.0538 1.3864 1.6611
Skewness −0.3705 0.1656 −0.1306 0.2227 −0.9773 −0.5892
Kurtosis 2.5560 2.0545 2.3229 2.2992 2.8131 2.0348

Jarque-Bera 2945.2870 4004.7750 2125.1090 2767.6010 15 287.2200 9169.6800
p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Sum 327 917.0000 261 570.0000 307 840.0000 217 833.7000 352 255.0000 359 034.0000
Sum Sq. Dev. 214 985.1000 178 387.7000 233 705.6000 106 969.6000 182 936.8000 261 703.1000

Observations 94,709 95,763 96,838 96,333 95,171 94,850

Eviews 9.
Pip spread per second prices.

A.2.2 Summary Statistics For FX Daily Spot Returns

TABLE A.2: Currency Pairs - Returns Statistics

EUR/GBP EUR/USD GBP/USD USD/JPY EUR/JPY GBP/JPY

Mean −0.0000 −0.0001 −0.0001 0.0001 −0.0000 0.0000
Median 0.0000 0.0000 −0.0001 0.0000 0.0001 0.0001
Maximum 0.0600 0.0303 0.0298 0.0347 0.0418 0.0416
Minimum −0.0206 −0.0265 −0.0840 −0.0377 −0.0614 −0.1227
Std. Dev. 0.0051 0.0055 0.0055 0.0056 0.0067 0.0074
Skewness 0.6002 −0.0286 −1.3527 −0.1462 −0.3752 −1.8459
Kurtosis 11.1561 4.9533 24.8917 8.1622 9.1157 35.1536

Jarque-Bera 7385.3320 414.9775 52 873.7000 2905.1230 4125.2630 113 826.9000
p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Sum −0.0573 −0.2320 −0.1743 0.1871 −0.0447 0.0135
Sum Sq. Dev. 0.0679 0.0789 0.0790 0.0826 0.1183 0.1424

Observations 2,608 2,608 2,608 2,608 2,608 2,608

Eviews 11.
Daily Closing Prices.
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A.2.3 Summary Statistics For FX Daily 1-month 25-delta Risk Reversals

TABLE A.3: Currency Pairs - Risk Reversal Statistics

EUR/GBP EUR/USD GBP/USD USD/JPY EUR/JPY GBP/JPY

Mean 0.0623 −0.7213 −0.7577 −0.6264 −1.3412 −1.2749
Median 0.0750 −0.5750 −0.6000 −0.6750 −1.1500 −1.2250
Maximum 7.4250 3.6000 0.6250 0.9880 0.3750 2.3100
Minimum −3.5500 −4.2380 −9.2750 −2.9750 −6.6500 −9.1000
Std. Dev. 0.8207 0.8475 0.8226 0.6962 0.9696 0.9810
Skewness 2.5299 −1.2981 −5.1366 −0.1165 −2.1918 −3.0421
Kurtosis 24.5806 5.7397 43.7320 2.8470 9.7288 22.7581

Jarque-Bera 51 036.2700 1483.4240 183 745.5000 8.0752 6717.9930 32 268.6200
p-value 0.0000 0.0000 0.0000 0.0176 0.0000 0.0000

Sum 155.4040 −1802.4990 −1893.5790 −1562.9230 −3353.0220 −2310.1440
Sum Sq. Dev. 1678.3680 1794.3290 1690.4200 1208.7510 2349.5230 1742.6570

Observations 2,493 2,499 2,499 2,495 2,500 1,812

Eviews 11.
Daily Closing Price Returns.

A.2.4 Final Digit Distribution Data For The χ2 Test

TABLE A.4: EUR/GBP χ2 Test Statistic Data

Final Digit Observed Expected
(Obs.− Exp.)2

Exp.

0 9,753 9,471 8.403
1 9,231 9,471 6.077
2 9,353 9,471 1.468
3 8,999 9,471 23.513
4 9,117 9,471 13.224
5 9,441 9,471 0.094
6 9,358 9,471 1.346
7 9,598 9,471 1.706
8 9,677 9,471 4.485
9 10,182 9,471 53.391

χ2 113.707
p-value 0.0000 %

Critical value at the 1% significance level with 9 degrees of freedom is 21.666.
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TABLE A.5: EUR/USD χ2 Test Statistic Data

Final Digit Observed Expected
(Obs.− Exp.)2

Exp.

0 9,083 9,576 25.411
1 8,674 9,576 85.017
2 9,453 9,576 1.588
3 9,873 9,576 9.193
4 10,133 9,576 32.363
5 10,215 9,576 42.599
6 9,812 9,576 5.801
7 9,828 9,576 6.616
8 9,642 9,576 0.451
9 9,050 9,576 28.925

χ2 237.962
p-value 0.0000 %

Critical value at the 1% significance level with 9 degrees of freedom is 21.666.

TABLE A.6: GBP/USD χ2 Test Statistic Data

Final Digit Observed Expected
(Obs.− Exp.)2

Exp.

0 9,682 9,684 0.000
1 9,458 9,684 5.265
2 9,701 9,684 0.031
3 9,571 9,684 1.314
4 9,732 9,684 0.240
5 9,626 9,684 0.345
6 9,622 9,684 0.394
7 9,764 9,684 0.664
8 9,969 9,684 8.399
9 9,713 9,684 0.088

χ2 16.741
p-value 5.2931 %

Critical value at the 1% significance level with 9 degrees of freedom is 21.666.
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TABLE A.7: USD/JPY χ2 Test Statistic Data

Final Digit Observed Expected
(Obs.− Exp.)2

Exp.

0 10,022 9,633 15.684
1 9,122 9,633 27.138
2 9,529 9,633 1.129
3 9,657 9,633 0.058
4 9,333 9,633 9.361
5 9,418 9,633 4.812
6 9,433 9,633 4.165
7 9,873 9,633 5.964
8 9,829 9,633 3.976
9 10,117 9,633 24.287

χ2 96.574
p-value 0.0000 %

Critical value at the 1% significance level with 9 degrees of freedom is 21.666.

TABLE A.8: EUR/JPY χ2 Test Statistic Data

Final Digit Observed Expected
(Obs.− Exp.)2

Exp.

0 9,467 9,517 0.264
1 9,485 9,517 0.108
2 9,106 9,517 17.758
3 9,403 9,517 1.368
4 9,577 9,517 0.377
5 9,760 9,517 6.199
6 9,773 9,517 6.881
7 9,579 9,517 0.403
8 9,534 9,517 0.030
9 9,487 9,517 0.095

χ2 33.483
p-value 0.0110 %

Critical value at the 1% significance level with 9 degrees of freedom is 21.666.
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TABLE A.9: GBP/JPY χ2 Test Statistic Data

Final Digit Observed Expected
(Obs.− Exp.)2

Exp.

0 9,527 9,485 0.186
1 9,071 9,485 18.070
2 9,312 9,485 3.155
3 9,689 9,485 4.388
4 9,401 9,485 0.744
5 9,682 9,485 4.092
6 9,697 9,485 4.738
7 9,184 9,485 9.552
8 9,809 9,485 11.068
9 9,478 9,485 0.005

χ2 33.483
p-value 0.0000 %

Critical value at the 1% significance level with 9 degrees of freedom is 21.666.

A.2.5 Final Digit Distribution Data For The Standardised Range SR Test

TABLE A.10: EUR/GBP SR Test Statistic Data

Final Digit Observed Population Distribution

0 9,527 94,709 0.1030
1 9,071 94,709 0.0975
2 9,312 94,709 0.0988
3 9,689 94,709 0.0950
4 9,401 94,709 0.0963
5 9,682 94,709 0.0997
6 9,697 94,709 0.0988
7 9,184 94,709 0.1013
8 9,809 94,709 0.1022
9 9,478 94,709 0.1075

Hi(φi) 0.1075
Lo(φi) 0.0950
SR 0.1249

No clustering returns a value of zero. 100% clustering returns a value of ten.
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TABLE A.11: EUR/USD SR Test Statistic Data

Final Digit Observed Population Distribution

0 9,083 95,763 0.0948
1 8,674 95,763 0.0906
2 9,453 95,763 0.0987
3 9,873 95,763 0.1031
4 10,133 95,763 0.1058
5 10,215 95,763 0.1067
6 9,812 95,763 0.1025
7 9,828 95,763 0.1026
8 9,642 95,763 0.1007
9 9,050 95,763 0.0945

Hi(φi) 0.1067
Lo(φi) 0.0906
SR 0.1609

No clustering returns a value of zero. 100% clustering returns a value of ten.

TABLE A.12: GBP/USD SR Test Statistic Data

Final Digit Observed Population Distribution

0 9,682 96,838 0.1000
1 9,458 96,838 0.0977
2 9,701 96,838 0.1002
3 9,571 96,838 0.0988
4 9,732 96,838 0.1005
5 9,626 96,838 0.0994
6 9,622 96,838 0.0994
7 9,764 96,838 0.1008
8 9,969 96,838 0.1029
9 9,713 96,838 0.1003

Hi(φi) 0.1029
Lo(φi) 0.0977
SR 0.0528

No clustering returns a value of zero. 100% clustering returns a value of ten.
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TABLE A.13: USD/JPY SR Test Statistic Data

Final Digit Observed Population Distribution

0 10,022 96,333 0.1040
1 9,122 96,333 0.0947
2 9,529 96,333 0.0989
3 9,657 96,333 0.1002
4 9,333 96,333 0.0969
5 9,418 96,333 0.0978
6 9,433 96,333 0.0979
7 9,873 96,333 0.1025
8 9,829 96,333 0.1020
9 10,117 96,333 0.1050

Hi(φi) 0.1050
Lo(φi) 0.0947
SR 0.1033

No clustering returns a value of zero. 100% clustering returns a value of ten.

TABLE A.14: EUR/JPY SR Test Statistic Data

Final Digit Observed Population Distribution

0 9,467 95,171 0.0995
1 9,485 95,171 0.0997
2 9,106 95,171 0.0957
3 9,403 95,171 0.0988
4 9,577 95,171 0.1006
5 9,760 95,171 0.1026
6 9,773 95,171 0.1027
7 9,579 95,171 0.1007
8 9,534 95,171 0.1002
9 9,487 95,171 0.0997

Hi(φi) 0.1027
Lo(φi) 0.0957
SR 0.0701

No clustering returns a value of zero. 100% clustering returns a value of ten.
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TABLE A.15: GBP/JPY SR Test Statistic Data

Final Digit Observed Population Distribution

0 9,527 94,850 0.1004
1 9,071 94,850 0.0956
2 9,312 94,850 0.0982
3 9,689 94,850 0.1022
4 9,401 94,850 0.0991
5 9,682 94,850 0.1021
6 9,697 94,850 0.1022
7 9,184 94,850 0.0968
8 9,809 94,850 0.1034
9 9,478 94,850 0.0999

Hi(φi) 0.1034
Lo(φi) 0.0956
SR 0.0778

No clustering returns a value of zero. 100% clustering returns a value of ten.
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A.2.6 Attraction Price Clustering Pattern Data

TABLE A.16: EUR/GBP Attraction Price Clustering Pattern Test Statistic Data

Final Digit Observed Test Stat. Result

0 9,753
1 9,231
2 9,353
3 8,999
4 9,117
5 9,441
6 9,358
7 9,598
8 9,677
9 10,182

Average(Digits 3&7) less Average(Digits 2& 8) −217
Average(Digits 2&8) less Average(Digits 4& 6) 278
Average(Digits 4&6) less Average(Digits 1&9) −469

Absolute(Digits 3 less 7) 599
Absolute(Digits 2 less 8) 324
Absolute(Digits 4 less 6) 241
Absolute(Digits 1 less 9) 951

Minimum(Average)/Average(Absolute)
−469

528.75
−0.887 Reject

A test statistic greater than one denotes strong evidence in favour of the premiss. Positive values below one suggest the right
ordering but a weak fit. The higher a positive number the better the fit and a non-positive value rejects the preposition.
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TABLE A.17: EUR/USD Attraction Price Clustering Pattern Test Statistic Data

Final Digit Observed Test Stat. Result

0 9,083
1 8,674
2 9,453
3 9,873
4 10,133
5 10,215
6 9,812
7 9,828
8 9,642
9 9,050

Average(Digits 3&7) less Average(Digits 2& 8) 303
Average(Digits 2&8) less Average(Digits 4& 6) −425
Average(Digits 4&6) less Average(Digits 1&9) 1,111

Absolute(Digits 3 less 7) 45
Absolute(Digits 2 less 8) 189
Absolute(Digits 4 less 6) 321
Absolute(Digits 1 less 9) 376

Minimum(Average)/Average(Absolute)
−425

232.75
−1.826 Reject

A test statistic greater than one denotes strong evidence in favour of the premiss. Positive values below one suggest the right
ordering but a weak fit. The higher a positive number the better the fit and a non-positive value rejects the preposition.
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TABLE A.18: GBP/USD Attraction Price Clustering Pattern Test Statistic Data

Final Digit Observed Test Stat. Result

0 9,682
1 9,458
2 9,701
3 9,571
4 9,732
5 9,626
6 9,622
7 9,764
8 9,969
9 9,713

Average(Digits 3&7) less Average(Digits 2& 8) −168
Average(Digits 2&8) less Average(Digits 4& 6) 158
Average(Digits 4&6) less Average(Digits 1&9) 92

Absolute(Digits 3 less 7) 193
Absolute(Digits 2 less 8) 268
Absolute(Digits 4 less 6) 110
Absolute(Digits 1 less 9) 255

Minimum(Average)/Average(Absolute)
−168

206.50
−0.811 Reject

A test statistic greater than one denotes strong evidence in favour of the premiss. Positive values below one suggest the right
ordering but a weak fit. The higher a positive number the better the fit and a non-positive value rejects the preposition.
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TABLE A.19: USD/JPY Attraction Price Clustering Pattern Test Statistic Data

Final Digit Observed Test Stat. Result

0 10,022
1 9,122
2 9,529
3 9,657
4 9,333
5 9,418
6 9,433
7 9,873
8 9,829
9 10,117

Average(Digits 3&7) less Average(Digits 2& 8) 86
Average(Digits 2&8) less Average(Digits 4& 6) 296
Average(Digits 4&6) less Average(Digits 1&9) −237

Absolute(Digits 3 less 7) 216
Absolute(Digits 2 less 8) 300
Absolute(Digits 4 less 6) 100
Absolute(Digits 1 less 9) 995

Minimum(Average)/Average(Absolute)
−237

402.75
−0.587 Reject

A test statistic greater than one denotes strong evidence in favour of the premiss. Positive values below one suggest the right
ordering but a weak fit. The higher a positive number the better the fit and a non-positive value rejects the preposition.
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TABLE A.20: EUR/JPY Attraction Price Clustering Pattern Test Statistic Data

Final Digit Observed Test Stat. Result

0 9,467
1 9,485
2 9,106
3 9,403
4 9,577
5 9,760
6 9,773
7 9,579
8 9,534
9 9,487

Average(Digits 3&7) less Average(Digits 2& 8) 171
Average(Digits 2&8) less Average(Digits 4& 6) −355
Average(Digits 4&6) less Average(Digits 1&9) 189

Absolute(Digits 3 less 7) 176
Absolute(Digits 2 less 8) 428
Absolute(Digits 4 less 6) 196
Absolute(Digits 1 less 9) 2

Minimum(Average)/Average(Absolute)
−355

200.5
−0.587 Reject

A test statistic greater than one denotes strong evidence in favour of the premiss. Positive values below one suggest the right
ordering but a weak fit. The higher a positive number the better the fit and a non-positive value rejects the preposition.
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TABLE A.21: GBP/JPY Attraction Price Clustering Pattern Test Statistic Data

Final Digit Observed Test Stat. Result

0 9,527
1 9,071
2 9,312
3 9,689
4 9,401
5 9,682
6 9,697
7 9,184
8 9,809
9 9,478

Average(Digits 3&7) less Average(Digits 2& 8) −124
Average(Digits 2&8) less Average(Digits 4& 6) 12
Average(Digits 4&6) less Average(Digits 1&9) 275

Absolute(Digits 3 less 7) 505
Absolute(Digits 2 less 8) 497
Absolute(Digits 4 less 6) 296
Absolute(Digits 1 less 9) 407

Minimum(Average)/Average(Absolute)
−124

426.25
−0.291 Reject

A test statistic greater than one denotes strong evidence in favour of the premiss. Positive values below one suggest the right
ordering but a weak fit. The higher a positive number the better the fit and a non-positive value rejects the preposition.
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A.2.7 Resolution Price Clustering Pattern Data

TABLE A.22: EUR/GBP Resolution Price Clustering Pattern Test Statistic Data

Final Digit Observed Test Stat. Result

0 9,753
1 9,231
2 9,353
3 8,999
4 9,117
5 9,441
6 9,358
7 9,598
8 9,677
9 10,182

Average(Digits 2&3&7&8) less Average(Digits 1&4&6&9) −65

Maximum(Digits 2or3or7or8) less Minimum(Digits 2or3or7or8) 678
Maximum(Digits 1or4or6or9) less Minimum(Digits 1or4or6or9) 1,065

Difference(Average)/Maximum(Maximum-Minimum)
−65

1, 065
−0.061 Reject

A test statistic greater than one denotes strong evidence in favour of the premiss. Positive values below one suggest the right ordering
but a weak fit. The higher a positive number the better the fit and a non-positive value rejects the preposition.
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TABLE A.23: EUR/USD Resolution Price Clustering Pattern Test Statistic Data

Final Digit Observed Test Stat. Result

0 9,083
1 8,674
2 9,453
3 9,873
4 10,133
5 10,215
6 9,812
7 9,828
8 9,642
9 9,050

Average(Digits 2&3&7&8) less Average(Digits 1&4&6&9) 282

Maximum(Digits 2or3or7or8) less Minimum(Digits 2or3or7or8) 420
Maximum(Digits 1or4or6or9) less Minimum(Digits 1or4or6or9) 1,459

Difference(Average)/Maximum(Maximum-Minimum)
282

1, 459
0.193 WeakFit

A test statistic greater than one denotes strong evidence in favour of the premiss. Positive values below one suggest the right ordering
but a weak fit. The higher a positive number the better the fit and a non-positive value rejects the preposition.

TABLE A.24: GBP/USD Resolution Price Clustering Pattern Test Statistic Data

Final Digit Observed Test Stat. Result

0 9,682
1 9,458
2 9,701
3 9,571
4 9,732
5 9,626
6 9,622
7 9,764
8 9,969
9 9,713

Average(Digits 2&3&7&8) less Average(Digits 1&4&6&9) 120

Maximum(Digits 2or3or7or8) less Minimum(Digits 2or3or7or8) 398
Maximum(Digits 1or4or6or9) less Minimum(Digits 1or4or6or9) 274

Difference(Average)/Maximum(Maximum-Minimum)
120

398
0.302 WeakFit

A test statistic greater than one denotes strong evidence in favour of the premiss. Positive values below one suggest the right ordering
but a weak fit. The higher a positive number the better the fit and a non-positive value rejects the preposition.
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TABLE A.25: USD/JPY Resolution Price Clustering Pattern Test Statistic Data

Final Digit Observed Test Stat. Result

0 10,022
1 9,122
2 9,529
3 9,657
4 9,333
5 9,418
6 9,433
7 9,873
8 9,829
9 10,117

Average(Digits 2&3&7&8) less Average(Digits 1&4&6&9) 221

Maximum(Digits 2or3or7or8) less Minimum(Digits 2or3or7or8) 344
Maximum(Digits 1or4or6or9) less Minimum(Digits 1or4or6or9) 995

Difference(Average)/Maximum(Maximum-Minimum)
221

995
0.222 WeakFit

A test statistic greater than one denotes strong evidence in favour of the premiss. Positive values below one suggest the right ordering
but a weak fit. The higher a positive number the better the fit and a non-positive value rejects the preposition.

TABLE A.26: EUR/JPY Resolution Price Clustering Pattern Test Statistic Data

Final Digit Observed Test Stat. Result

0 9,467
1 9,485
2 9,106
3 9,403
4 9,577
5 9,760
6 9,773
7 9,579
8 9,534
9 9,487

Average(Digits 2&3&7&8) less Average(Digits 1&4&6&9) −175

Maximum(Digits 2or3or7or8) less Minimum(Digits 2or3or7or8) 473
Maximum(Digits 1or4or6or9) less Minimum(Digits 1or4or6or9) 288

Difference(Average)/Maximum(Maximum-Minimum)
−175

473
−0.370 Reject

A test statistic greater than one denotes strong evidence in favour of the premiss. Positive values below one suggest the right ordering
but a weak fit. The higher a positive number the better the fit and a non-positive value rejects the preposition.
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TABLE A.27: GBP/JPY Resolution Price Clustering Pattern Test Statistic Data

Final Digit Observed Test Stat. Result

0 9,527
1 9,071
2 9,312
3 9,689
4 9,401
5 9,682
6 9,697
7 9,184
8 9,809
9 9,478

Average(Digits 2&3&7&8) less Average(Digits 1&4&6&9) 87

Maximum(Digits 2or3or7or8) less Minimum(Digits 2or3or7or8) 625
Maximum(Digits 1or4or6or9) less Minimum(Digits 1or4or6or9) 626

Difference(Average)/Maximum(Maximum-Minimum)
87

626
0.139 WeakFit

A test statistic greater than one denotes strong evidence in favour of the premiss. Positive values below one suggest the right ordering
but a weak fit. The higher a positive number the better the fit and a non-positive value rejects the preposition.
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Appendix B

The Properties of Price Processes

B.1 The Properties of Price Processes

B.1.1 Stochastic Processes, Markov Properties and Diffusions

A stochastic process is a random process evolving with time or alternatively, a collection of
random variables, X(t), indexed by time, where time is always a subset of non-negative real
numbers, [0,∞). The stochastic process considered here is a continuous time process where
a variable can change value at any point in time, such that the random variable X(t) takes
any value in the sample space: the set of all possible stock prices or returns, at any point in
time.

A Markov process is a particular type of stochastic process where only the present value of
a variable is relevant for predicting the future. The past history of the variable and the way
that the present has emerged from the past are irrelevant. A process X(t) is Markov if and
only if

P [X(t)|X(t− 1)] = P [X(t)|X(1), . . . , X(t− 1)] . (B.1)

A Markov process is a class of stochastic process where the change of value of the random
variable X(t) at time t is determined by the value of the process at time t and not by the
values leading up to t. A diffusion process denotes a continuous time, continuous state space,
Markov process whose sample paths are continuous. A model where stock prices change
continuously is known as a diffusion model. This is referred to as a mixed jump-diffusion
model when continuous changes are overlaid with jumps and a pure jump model when all
stock price changes are due to jumps alone. These types of processes are known collectively
as Lévy Processes.
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B.1.2 Brownian Motion

A particular type of Markov process is a Wiener process with a mean equal to zero and a
variance equal to the change in the time interval ∆t. This is referred to as Brownian motion
when describing the motion of a particle subject to a large number of small shocks.

Brownian motion is a stochastic process with both continuous time and continuous sample
space that models random continuous motion. A Brownian motion with mean µ and variance
σ2 is a stochastic process where the underlying random variable X(t) at time t can only change
continuously and takes real number values satisfying:

i. X(0) = 0.

ii. For any tn > tn−1 > · · · > t0 ≥ 0, the random variables Xtk −Xtk−1
where k = 1, 2, . . . , n

are independent.

iii. For any τ > 0 and t ≥ 0, the random variable X(t+ τ)−X(t) has a normal distribution
with mean τµ and variance τσ2.

iv. The paths are continuous, that is the function t 7−→ Xt is a continuous function of t.

Standard Brownian motion is a Brownian motion with σ2 = 1.

Expressed formally, a stochastic process {z(t), t ≥ 0} follows a Wiener process if it exhibits the
following properties:

i. The change in value of z(t), ∆z, over a small time interval, ∆t, follows a normal distribution
with a mean 0 and variance equal to the change in the time interval ∆t. Specifically

∆z = z(t+ ∆t)− z(t) = ε
√

∆t , (B.2)

where ε ∼ (0, 1) is a standardised normal random variable.

ii. The change in the value of z(t), ∆z, for any two non-overlapping short intervals of time
∆t are independent.

In ordinary calculus it is usual to proceed from small changes to the limit as the small changes
become closer to zero. Thus the notation dx = a dt is used to indicate ∆x = a∆t in the limit as
∆t −→ 0. Using similar notation in stochastic calculus, where dz refers to a Wiener increment
where the change in value of z, ∆z, is in the limit as ∆t −→ 0.

A Wiener process is not differentiable with respect to time, however it is useful to define a
term to express the change in the Wiener process with respect to time, dz/dt. A commonly
used term for this expression is white noise: a process which has constant mean and variance
and zero autocorrelation dependent on the lag and not on time. The white noise process is
the derivative of the Wiener process. The standard Wiener process has a drift rate: the rate
at which the average changes, of zero and a variance of one with a characteristic function
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describing the probability distribution of ∼ φ(0, 1). The drift rate of zero indicates that the
expected value of the underlying random variable X(t) at any future time t is equal to the
current value. The variance of one means that the variance of the change in X(t) in a time
interval of ∆t is equal to ∆t.

A generalised Wiener process is obtained by inserting white noise in an ordinary differential
equation of the type

dx = a dt+ b dz , (B.3)

where a and b are constants and z is a Wiener process. The first term of Equation (B.3)
implies that x has an expected drift rate of a per time unit and the second term involving
dz is regarded as adding noise or variability to the path followed by x. The amount of noise
is b times the differential of the Wiener process white noise. For a small interval of time the
change in the value of x, ∆x, is given by

∆x = a∆t+ b ε
√

∆t , (B.4)

where ∆x has a normal distribution with mean a∆t and variance b2 ∆t. Further generalisations
of the Wiener process yield the Itô process where the constants a and b are functions of the
underlying variable x and time t and which takes the form

dx = a (x, t) dt+ b (x, t) dz (B.5)

where dz is a Wiener process. The expected drift rate and variance rate of an Itô process
are liable to change over time. This is a Markov process because the change in x at time t

depends only on the value of x at time t, not on its history. The variable x has a drift rate
of a and a variance of b2. Itô’s lemma shows that a function G of x and t follows the process

dG =

(
∂G

∂x
a+

∂G

∂t
+

1

2

∂2G

∂x2
b2

)
dt+

∂G

∂x
b dz , (B.6)

where the dz is the same Wiener process as in Equation (B.5). Thus G also follows an Itô
process with a drift rate of

∂G

∂x
a+

∂G

∂t
+

1

2

∂2G

∂x2
b2 (B.7)

and a variance rate of (
∂G

∂x

)2

b2 . (B.8)

Wiener Diffusion Process

Any Wiener diffusion process may be considered as the limiting case of a general jump
process. The general Wiener diffusion process as a function of the stock price S and time t,
(S, t), is given by

dS = µ(S, t)S dt+ σ(S, t)S dz , (B.9)
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with drift µ(S, t) and variance σ2(S, t). Applying the Black and Scholes (1972) assumptions,
see Section G.1.1 on page 194, leads to the BSM differential equation

∂f

∂t
+ rS

∂f

∂S
+

1

2
σ2(S, t)

∂2f

∂S2
= rf , (B.10)

note that the drift µ(S, t) does not feature in the BSM differential equation whereas the variance
σ2(S, t) does.

B.1.3 Geometric Brownian Motion

Although the drift rate was assumed to be constant in the case of Brownian motion, this is
not the situation for stock prices. In the context of stock prices it is not the drift rate that is
assumed to be constant but the return on the investment. At a given time t the return on the
investment, µ, is specified as the ratio of the drift rate a to the value of stock S(t) at time t;
µ = a/S(t). Hence the constant expected drift rate assumption in Brownian motion is replaced
by an assumption of constant expected rate of return in geometric Brownian motion.

Geometric Brownian motion is the stochastic process used to model the evolution of stock
prices over time when one believes the percentage change over equal length, non-overlapping
intervals are independent and identically distributed (i.i.d.). Let the present time be t0 = 0

where t0 < t1 <, . . . , < tn = T and S(t) denote the price of the security at times t from the
present. Then the collection of prices S(t), 0 ≤ t < ∞ follows a geometric Brownian motion
with drift parameter µ and volatility parameter σ if for all non-negative values of t the random
variable S(t+ 1)/S(t) is independent and identically distributed for all prices up to time T .

Let ut = S(t+ 1)/S(t) and taking the logarithms of both sides

lnut = ln

(
S(t+ 1)

S(t)

)
rearranging: lnS(t+ 1) = lnS(t) + lnut , (B.11)

if lnut are independent and identically distributed normal random variables with mean µ and
variance σ2 then variable ut will have a log-normal distribution. The successive prices are
found to be an independent product of n log-normal random variables

S(t) = S(0)u1 u2 . . . un , (B.12)

taking the natural logarithm gives

lnS(t) = lnS(0) +
n∑
i=0

lnui , (B.13)
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where lnS(0) is constant and each lnui is a normally distributed random variable. Given
that the sum of normal variables is a normal variable, then it follows that lnS(t) is a normal
random variable. Hence S(t) has a log-normal distribution with

E

[
ln

(
S(t)

S(0)

)]
= µt and V ar

(
ln

(
S(t)

S(0)

))
= σ2t . (B.14)

The ratio ln (S(t+ 1)/S(t)) has a distribution approaching that of a normal random variable
with mean µt and variance σ2t. Therefore the series of prices will be a geometric Brownian
motion if the ratio of the price at time S(t + 1) in the future to the present price S(t) is
independent of past price history: a Markov process, and has a log-normal distribution
with mean parameter µt and variance parameter σ2t. Note that if lnS(t) follows a Brownian
motion then S(t) follows a geometric Brownian motion since geometric Brownian motion is
the exponential of Brownian motion.

Geometric Brownian motion can be formally defined as the variable S(t), 0 ≤ t <∞, with drift
parameter µ and volatility parameter σ if for all non-negative values of times t and T the
random variable of S(t+ T )/S(t) is independent of all values of the variable up to time t and
ln (S(t+ T )/S(t)) has a normal distribution with mean µt and variance σ2t, independent of t
where µ and σ are constants.

To model the stock price evolution let S(t) be the price of stock at time t and assume the
expected drift rate a = µS for some constant µ. This constant µ is the expected rate of
return. The standard deviation of the proportional change in the stock price over a small
time interval ∆t is σS

√
∆t. Thus the stock price can be written as

∆S = µS∆t+ σS∆z or
∆S

S
= µ∆t+ σ ε

√
∆t , (B.15)

where the Wiener process ∆z = ε
√

∆t for a short interval of time ∆t. In the limit as ∆t −→ 0

this becomes
dS

S
= µ dt+ σ ε

√
dt , (B.16)

where the variable µ is the stock price expected rate of return and the second term is the
stochastic component of the return with σ being the volatility of the stock price. Integrating
between time 0 and time t gives

E [S(t)]) = S(0) e

(
µ+σ2

2

)
t
. (B.17)

Therefore the expected stock price grows exponentially at the rate
(
µ+ σ2

2

)
where S(0) is the

initial price at time 0 and where the expected value of the price S(t) at time t depends on
both the mean parameter µt and variance parameter σ2t of the geometric Brownian motion
governing the price evolution.
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Stable Paretian Distribution
Probability Laws

The general characteristic function for the stable distribution is given by the following
theorem:

φ(u) = eψ(u) is the characteristic function defining the probability distribution of random
variable U of a stable law of exponent α, 0 < α < 1 and 1 < α < 2 if and only if it has the form

ψ(u) = iucp − dp|u|α
(

1 + iθp
u

|u|
tan
(π

2
α
))

, (C.1)

where the characteristic exponent α is a measures the degree of peakedness that varies from
0 > α ≤ 2 and intimately related to the Pareto exponent θp: a real measure of skewness that
can vary from −1 ≥ θp ≤ +1, that is |θp| ≤ 1. If the Pareto exponent θp = 0, the stable densities
are symmetric. Together α and θp determine the type of stable random variable. The shift
parameter cp is real and determines the shift of the distribution, and dp is real and positive
scale factor and i is the median or modal value of U; i has no obvious interpretation when
0 < α < 1 with θp 6= 0.

For α = 1, θp must vanish, and the form of the characteristic function is given by

ψ(u) = iucp − dp|u|
(

1 + iθp
u

|u|
2

π
ln(|u|)

)
, (C.2)

where cp, dp, and θp are as above.

The parameters cp, dp, and θp have useful interpretations. Let the notation X
∆
= Sα(σ, θp, cp)

to mean that X is a stable random variable with characteristic exponent α and parameters
θp, cp and d = σα.

The parameter cp is a shift parameter, which can be seen from the fact that if X ∆
= Sα(σ, θp, cp),
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then X + a
∆
= Sα(σ, θp, cp + a).

To explain the parameter σ, write σ = d1/α for a stable distribution with characteristic
exponent α. Then σ is said to be a scale parameter because

kX
∆
=Sα(|k|σ, sign(k)θp, kcp) if α 6=1

kX
∆
=S1(|k|σ, sign(k)θp, kcp −

2

π
k(ln |k|)σθp) if α =1 .

(C.3)

Lastly, Pareto exponent θp is said to be a skewness parameter, because X
∆
= Sα(σ, θp, cp) is

symmetric if and only if θp = 0 and cp = 0. Moreover, X is symmetric about cp if and only if
θp = 0.
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Appendix D

Lemmas - Compound Events Model

Lemma (1). Let Z(t) be defined as in Equation (4.46) on page 59, and let the φ(u) ≡
EeiuZ(t) denote the characteristic function, then:

lnφ(u) = iCu− tσ2
1u

2

2
+ λt

[
eiθceu−(σ2

2u
2/2) − 1

]
(D.1)

Lemma (2). Let φ∗(u) denote the characteristics function of the one-step price change
∆Z(t) ≡ [Z(t)− Z(t− 1] defined in Equation (4.47) on page 60, then,

lnφ∗(u) = −σ
2
1u

2

2
+ λ

[
eiθceu−(σ2

2u
2/2) − 1

]
(D.2)

Lemma (3). The distribution of ∆Z(t) is leptokurtic and are the first four cumulants of
the distribution of ∆Z(t)

K1 = λθce ,

K2 = σ2
1 + λ(θ2

ce + σ2
2) ,

K3 = λθce(θ
2
ce + 3σ2

2) ,

K4 = λ(θ4
ce + 6 θ2

ceσ
2
2 + 3σ4

2) ,

(D.3)

Lemma (4). The distribution of ∆Z(t) is more peaked than a comparable normal random
variable where the density V in the vicinity of the mean is:

V ≡ ∆Z(t)− E[∆Z(t)]√
[var∆Z(t)]

(D.4)

Lemma (5). The distribution of ∆Z(t) is symmetric about its mean if its mean is zero;

159



APPENDIX D. LEMMAS - COMPOUND EVENTS MODEL F. Josephidou

otherwise, the distribution is asymmetric. The skewness of the distribution of ∆Z(t) is
defined by:

γ1 ≡
K3√
K3

2

=
λ θce(θ

2
ce + 3σ2

2)√
[σ2

1 + λ (θ2
ce + σ2

2)]3
(D.5)

Lemma (6). The density function and cumulative density function of the distribution of
∆Z(t) may be represented in the form:

qθce(x) =
∞∑
n=0

eλλn

n!
× e[(− 1

2
)(x−nθce)2/(nσ2

2+σ2
1)]√

2π(σ2
1 + nσ2

2)

and

Fθce(x) =
∞∑
n=0

eλλn

n!
× Φ

[
x− xθce√
nσ2

2 + σ2
1

] (D.6)

where Φ(t) denotes the cumulative density function of a standard normal variate.

Lemma (7). When |θce| is small, the probability in the extreme tails of the distribution of
∆Z(t) exceeds that of a comparable normally distributed variable.

Lemma (8). The covariance matrix of the process Z(t) is given by:

ψ = diag[σ2t+ λ1t(θce
2
1 + σ2

1), . . . , σ2t+ λpt(θce
2
p + σ2

p)] + γt(Σ + µ′µ). (D.7)

Lemma (9). The characteristic function of a simple representation the distribution of the
vector process ∆Z(t) is given by:

lnφ∗(s) = −σ
2

2
ss′ + γ[eisµ

′−(s
∑
s′/2) − 1] +

p∑
k=1

λk[e
iθceksk−(σ2

ks
2
k/2) − 1] (D.8)
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Appendix E

Test for Departure from Normality

E.1 EUR/GBP

E.1.1 Statistics Partitioned by Year

TABLE E.1: EUR/GBP - Test for Departure from Normality

Year Mean Std. Dev. Skewness Sak ZbSk Kurtosis Kc
u ZdKu DP e p-valuef Nbr. of Obs.

Yr. 1 −0.0002 0.0046 −0.4065 −2.6966 2.4541 8.1694 74.0108 0.0000 261
Yr. 2 −0.0001 0.0039 0.4603 3.0534 2.0705 6.8927 56.8322 0.0000 261
Yr. 3 0.0001 0.0048 0.6754 4.4801 0.7917 2.6354 27.0163 0.0000 261
Yr. 4 0.0004 0.0073 1.9833 13.1309 16.7497 55.6535 3269.7287 0.0000 260
Yr. 5 0.0002 0.0062 0.2527 1.6761 −0.0011 −0.0035 2.8094 0.2454 261
Yr. 6 −0.0004 0.0038 −0.2041 −1.3539 0.8955 2.9800 10.7131 0.0047 261
Yr. 7 −0.0002 0.0040 −0.2666 −1.7683 0.5560 1.8508 6.5523 0.0378 261
Yr. 8 0.0001 0.0041 0.0027 0.0181 1.1193 3.7260 13.8833 0.0010 261
Yr. 9 0.0000 0.0053 −0.3261 −2.1632 0.6112 2.0346 8.8191 0.0120 261
Yr. 10 −0.0002 0.0059 −0.0951 −0.6295 −0.3512 −1.1668 1.7578 0.4152 260
a Skewness statistic is the third central moment divided by the three-halves power of the second central moment multiplied by the sample skewness

coefficient. b The skewness test statistic is the sample skewness divided by the standard error of skewness. The 5% confidence interval for skewness is
sample skewness ± 1.96 times the standard error of skewness. c The kurtosis coefficient is the fourth central moment divided by the square of the second
central moment multiplied by the sample kurtosis coefficient. d The kurtosis test statistic is the sample kurtosis divided by the standard error of kurtosis.
The 5% confidence interval for kurtosis is sample kurtosis ± 1.96 times the standard error of kurtosis. e The D’Agostino-Pearson test statistic with χ2

2df. f The p-value at the 5% level of significance.
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E.1.2 Statistics Partitioned by Days of The Week

TABLE E.2: EUR/GBP - Test for Departure from Normality

Day of Week Mean Std. Dev. Skewness Sak ZbSk Kurtosis Kc
u ZdKu DP e p-valuef Nbr. of Obs.

Monday 0.0001 0.0047 0.2653 2.4820 2.9925 14.0227 202.7954 0.0000 522
Tuesday 0.0000 0.0051 −0.2115 −1.9781 0.9841 4.6112 25.1760 0.0000 522
Wednesday −0.0005 0.0047 −0.1695 −1.5857 0.5881 2.7560 10.1100 0.0064 522
Thursday 0.0001 0.0053 0.1365 1.2755 0.8391 3.9283 17.0582 0.0002 521
Friday 0.0003 0.0057 2.1209 19.8206 23.4017 109.5537 12 394.8786 0.0000 521
a Skewness statistic is the third central moment divided by the three-halves power of the second central moment multiplied by the sample skewness coefficient.
b The skewness test statistic is the sample skewness divided by the standard error of skewness. The 5% confidence interval for skewness is sample skewness ±
1.96 times the standard error of skewness. c The kurtosis coefficient is the fourth central moment divided by the square of the second central moment multiplied
by the sample kurtosis coefficient. d The kurtosis test statistic is the sample kurtosis divided by the standard error of kurtosis. The 5% confidence interval for
kurtosis is sample kurtosis ± 1.96 times the standard error of kurtosis. e The D’Agostino-Pearson test statistic with χ2 2df. f The p-value at the 5% level of
significance.

E.1.3 Statistics Partitioned by Year and Days of The Week

TABLE E.3: EUR/GBP - Test for Departure from Normality

Year 1 Mean Std. Dev. Skewness Sak ZbSk Kurtosis Kc
u ZdKu DP e p-valuef Nbr. of Obs.

Monday 0.0012 0.0044 0.5570 1.6858 1.8230 2.8042 10.7054 0.0047 52
Tuesday −0.0006 0.0047 0.4248 1.2855 2.9399 4.5223 22.1041 0.0000 52
Wednesday −0.0009 0.0042 −0.8222 −2.5109 3.4482 5.3509 34.9367 0.0000 53
Thursday −0.0001 0.0044 −1.0820 −3.2746 2.7277 4.1958 28.3275 0.0000 52
Friday −0.0004 0.0050 −1.1324 −3.4271 2.1864 3.3632 23.0563 0.0000 52
a Skewness statistic is the third central moment divided by the three-halves power of the second central moment multiplied by the sample skewness

coefficient. b The skewness test statistic is the sample skewness divided by the standard error of skewness. The 5% confidence interval for skewness is sample
skewness ± 1.96 times the standard error of skewness. c The kurtosis coefficient is the fourth central moment divided by the square of the second central
moment multiplied by the sample kurtosis coefficient. d The kurtosis test statistic is the sample kurtosis divided by the standard error of kurtosis. The 5%
confidence interval for kurtosis is sample kurtosis ± 1.96 times the standard error of kurtosis. e The D’Agostino-Pearson test statistic with χ2 2df. f The
p-value at the 5% level of significance.
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TABLE E.4: EUR/GBP - Test for Departure from Normality

Year 2 Mean Std. Dev. Skewness Sak ZbSk Kurtosis Kc
u ZdKu DP e p-valuef Nbr. of Obs.

Monday 0.0005 0.0034 0.6295 1.9051 0.2607 0.4010 3.7903 0.1503 52
Tuesday −0.0007 0.0033 0.2413 0.7368 −0.3057 −0.4743 0.7679 0.6812 53
Wednesday −0.0003 0.0034 −0.0866 −0.2622 1.7353 2.6693 7.1937 0.0274 52
Thursday 0.0002 0.0048 0.5559 1.6823 2.7944 4.2984 21.3065 0.0000 52
Friday −0.0001 0.0043 0.4757 1.4396 1.3767 2.1177 6.5572 0.0377 52
a Skewness statistic is the third central moment divided by the three-halves power of the second central moment multiplied by the sample skewness

coefficient. b The skewness test statistic is the sample skewness divided by the standard error of skewness. The 5% confidence interval for skewness is sample
skewness ± 1.96 times the standard error of skewness. c The kurtosis coefficient is the fourth central moment divided by the square of the second central
moment multiplied by the sample kurtosis coefficient. d The kurtosis test statistic is the sample kurtosis divided by the standard error of kurtosis. The 5%
confidence interval for kurtosis is sample kurtosis ± 1.96 times the standard error of kurtosis. e The D’Agostino-Pearson test statistic with χ2 2df. f The
p-value at the 5% level of significance.

TABLE E.5: EUR/GBP - Test for Departure from Normality

Year 3 Mean Std. Dev. Skewness Sak ZbSk Kurtosis Kc
u ZdKu DP e p-valuef Nbr. of Obs.

Monday 0.0002 0.0044 0.4849 1.4807 0.4795 0.7440 2.7461 0.2533 53
Tuesday 0.0001 0.0046 −0.3963 −1.1994 0.5115 0.7868 2.0576 0.3574 52
Wednesday −0.0005 0.0036 −0.6765 −2.0475 −0.2389 −0.3674 1.3274 0.1149 52
Thursday −0.0004 0.0056 0.7123 2.1558 1.6915 2.6019 11.4173 0.0033 52
Friday 0.0012 0.0053 −0.1919 −0.5809 0.1064 0.1637 0.3642 0.8335 52
a Skewness statistic is the third central moment divided by the three-halves power of the second central moment multiplied by the sample skewness

coefficient. b The skewness test statistic is the sample skewness divided by the standard error of skewness. The 5% confidence interval for skewness is sample
skewness ± 1.96 times the standard error of skewness. c The kurtosis coefficient is the fourth central moment divided by the square of the second central
moment multiplied by the sample kurtosis coefficient. d The kurtosis test statistic is the sample kurtosis divided by the standard error of kurtosis. The 5%
confidence interval for kurtosis is sample kurtosis ± 1.96 times the standard error of kurtosis. e The D’Agostino-Pearson test statistic with χ2 2df. f The
p-value at the 5% level of significance.

TABLE E.6: EUR/GBP - Test for Departure from Normality

Year 4 Mean Std. Dev. Skewness Sak ZbSk Kurtosis Kc
u ZdKu DP e p-valuef Nbr. of Obs.

Monday 0.0002 0.0065 0.7718 2.3359 5.4068 8.3170 74.6288 0.0000 52
Tuesday −0.0001 0.0073 −0.5393 −1.6322 0.4239 0.6521 3.0891 0.2134 52
Wednesday −0.0005 0.0059 −0.5769 −1.7460 0.4529 0.6967 3.5339 0.1709 52
Thursday −0.0001 0.0058 −0.1731 −0.5239 0.0866 0.1332 0.2922 0.8641 52
Friday 0.0025 0.0101 3.6978 11.1915 20.2867 21.2058 1099.0524 0.0000 52
a Skewness statistic is the third central moment divided by the three-halves power of the second central moment multiplied by the sample skewness

coefficient. b The skewness test statistic is the sample skewness divided by the standard error of skewness. The 5% confidence interval for skewness is sample
skewness ± 1.96 times the standard error of skewness. c The kurtosis coefficient is the fourth central moment divided by the square of the second central
moment multiplied by the sample kurtosis coefficient. d The kurtosis test statistic is the sample kurtosis divided by the standard error of kurtosis. The 5%
confidence interval for kurtosis is sample kurtosis ± 1.96 times the standard error of kurtosis. e The D’Agostino-Pearson test statistic with χ2 2df. f The
p-value at the 5% level of significance.
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TABLE E.7: EUR/GBP - Test for Departure from Normality

Year 5 Mean Std. Dev. Skewness Sak ZbSk Kurtosis Kc
u ZdKu DP e p-valuef Nbr. of Obs.

Monday −0.0003 0.0058 0.2529 0.7655 0.3278 0.5043 0.8403 0.6569 52
Tuesday 0.0002 0.0060 0.0216 0.0653 −0.8895 −1.3682 1.8763 0.3914 52
Wednesday −0.0001 0.0063 0.5161 1.5619 −0.8200 −1.2614 4.0306 0.1333 52
Thursday 0.0011 0.0072 0.2126 0.6433 0.1149 0.1767 0.4451 0.8005 52
Friday −0.0001 0.0057 0.0261 0.0798 1.5081 2.3402 5.4831 0.0645 53
a Skewness statistic is the third central moment divided by the three-halves power of the second central moment multiplied by the sample skewness

coefficient. b The skewness test statistic is the sample skewness divided by the standard error of skewness. The 5% confidence interval for skewness is sample
skewness ± 1.96 times the standard error of skewness. c The kurtosis coefficient is the fourth central moment divided by the square of the second central
moment multiplied by the sample kurtosis coefficient. d The kurtosis test statistic is the sample kurtosis divided by the standard error of kurtosis. The 5%
confidence interval for kurtosis is sample kurtosis ± 1.96 times the standard error of kurtosis. e The D’Agostino-Pearson test statistic with χ2 2df. f The
p-value at the 5% level of significance.

TABLE E.8: EUR/GBP - Test for Departure from Normality

Year 6 Mean Std. Dev. Skewness Sak ZbSk Kurtosis Kc
u ZdKu DP e p-valuef Nbr. of Obs.

Monday 0.0002 0.0033 0.7490 2.2670 0.6527 1.0041 6.1475 0.0462 52
Tuesday −0.0001 0.0033 0.3015 0.9124 0.0026 0.0041 0.8325 0.6595 52
Wednesday −0.0011 0.0041 −0.3464 −1.0484 0.5850 0.8999 1.9090 0.3850 52
Thursday −0.0009 0.0041 −0.3031 −0.9257 1.0776 1.6722 3.6533 0.1610 53
Friday −0.0003 0.0041 −0.4807 −1.4548 1.0429 1.6043 4.6903 0.0958 52
a Skewness statistic is the third central moment divided by the three-halves power of the second central moment multiplied by the sample skewness

coefficient. b The skewness test statistic is the sample skewness divided by the standard error of skewness. The 5% confidence interval for skewness is sample
skewness ± 1.96 times the standard error of skewness. c The kurtosis coefficient is the fourth central moment divided by the square of the second central
moment multiplied by the sample kurtosis coefficient. d The kurtosis test statistic is the sample kurtosis divided by the standard error of kurtosis. The 5%
confidence interval for kurtosis is sample kurtosis ± 1.96 times the standard error of kurtosis. e The D’Agostino-Pearson test statistic with χ2 2df. f The
p-value at the 5% level of significance.

TABLE E.9: EUR/GBP - Test for Departure from Normality

Year 7 Mean Std. Dev. Skewness Sak ZbSk Kurtosis Kc
u ZdKu DP e p-valuef Nbr. of Obs.

Monday −0.0002 0.0036 0.2994 0.9062 0.7855 1.2083 2.2812 0.3196 52
Tuesday 0.0009 0.0036 −0.1140 −0.3450 0.0998 0.1535 0.1426 0.9312 52
Wednesday −0.0012 0.0043 −0.5955 −1.8187 0.3005 0.4663 3.5251 0.1716 53
Thursday −0.0009 0.0049 0.1302 0.3939 0.1110 0.1708 0.1843 0.9120 52
Friday 0.0004 0.0032 −0.5093 −1.5413 1.2537 1.9285 6.0949 0.0475 52
a Skewness statistic is the third central moment divided by the three-halves power of the second central moment multiplied by the sample skewness

coefficient. b The skewness test statistic is the sample skewness divided by the standard error of skewness. The 5% confidence interval for skewness is sample
skewness ± 1.96 times the standard error of skewness. c The kurtosis coefficient is the fourth central moment divided by the square of the second central
moment multiplied by the sample kurtosis coefficient. d The kurtosis test statistic is the sample kurtosis divided by the standard error of kurtosis. The 5%
confidence interval for kurtosis is sample kurtosis ± 1.96 times the standard error of kurtosis. e The D’Agostino-Pearson test statistic with χ2 2df. f The
p-value at the 5% level of significance.
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TABLE E.10: EUR/GBP - Test for Departure from Normality

Year 8 Mean Std. Dev. Skewness Sak ZbSk Kurtosis Kc
u ZdKu DP e p-valuef Nbr. of Obs.

Monday 0.0000 0.0042 −0.4679 −1.4160 2.1565 3.3172 13.0093 0.0015 52
Tuesday 0.0001 0.0037 0.1365 0.4170 1.2817 1.9889 4.1298 0.1268 53
Wednesday 0.0000 0.0039 −0.1249 −0.3780 0.7087 1.0901 1.3313 0.5139 52
Thursday 0.0000 0.0041 −0.4494 −1.3600 0.5181 0.7970 2.4849 0.2887 52
Friday 0.0007 0.0046 −0.5770 1.7464 0.8596 1.3222 4.7983 0.0908 52
a Skewness statistic is the third central moment divided by the three-halves power of the second central moment multiplied by the sample skewness

coefficient. b The skewness test statistic is the sample skewness divided by the standard error of skewness. The 5% confidence interval for skewness is sample
skewness ± 1.96 times the standard error of skewness. c The kurtosis coefficient is the fourth central moment divided by the square of the second central
moment multiplied by the sample kurtosis coefficient. d The kurtosis test statistic is the sample kurtosis divided by the standard error of kurtosis. The 5%
confidence interval for kurtosis is sample kurtosis ± 1.96 times the standard error of kurtosis. e The D’Agostino-Pearson test statistic with χ2 2df. f The
p-value at the 5% level of significance.

TABLE E.11: EUR/GBP - Test for Departure from Normality

Year 9 Mean Std. Dev. Skewness Sak ZbSk Kurtosis Kc
u ZdKu DP e p-valuef Nbr. of Obs.

Monday −0.0005 0.0050 −0.4991 −1.5244 2.7439 4.2580 20.4540 0.0000 53
Tuesday 0.0010 0.0049 0.1025 0.3101 −0.0887 −0.1364 0.1148 0.9442 52
Wednesday −0.0003 0.0047 −0.5558 −1.6821 0.0486 0.0748 2.8350 0.2423 52
Thursday 0.0012 0.0055 −0.1593 −0.4822 0.6215 0.9560 1.1464 0.5637 52
Friday −0.0016 0.0058 −0.4623 −1.3990 −0.3821 −0.5877 2.3028 0.3162 52
a Skewness statistic is the third central moment divided by the three-halves power of the second central moment multiplied by the sample skewness

coefficient. b The skewness test statistic is the sample skewness divided by the standard error of skewness. The 5% confidence interval for skewness is sample
skewness ± 1.96 times the standard error of skewness. c The kurtosis coefficient is the fourth central moment divided by the square of the second central
moment multiplied by the sample kurtosis coefficient. d The kurtosis test statistic is the sample kurtosis divided by the standard error of kurtosis. The 5%
confidence interval for kurtosis is sample kurtosis ± 1.96 times the standard error of kurtosis. e The D’Agostino-Pearson test statistic with χ2 2df. f The
p-value at the 5% level of significance.

TABLE E.12: EUR/GBP - Test for Departure from Normality

Year 10 Mean Std. Dev. Skewness Sak ZbSk Kurtosis Kc
u ZdKu DP e p-valuef Nbr. of Obs.

Monday 0.0004 0.0053 −0.2505 −0.7580 −0.5439 −0.8367 1.2747 0.5287 52
Tuesday −0.0009 0.0073 −0.1232 −0.3730 −0.5566 −0.8562 0.8722 0.6466 52
Wednesday −0.0002 0.0056 0.0097 0.0293 −0.5305 −0.8160 0.6667 0.7165 52
Thursday 0.0007 0.0057 −0.0045 −0.0138 −0.7474 −1.1497 1.3220 0.5163 52
Friday 0.0004 0.0053 −0.2505 −0.7580 −0.5439 −0.8367 1.2747 0.5287 52
a Skewness statistic is the third central moment divided by the three-halves power of the second central moment multiplied by the sample skewness

coefficient. b The skewness test statistic is the sample skewness divided by the standard error of skewness. The 5% confidence interval for skewness is sample
skewness ± 1.96 times the standard error of skewness. c The kurtosis coefficient is the fourth central moment divided by the square of the second central
moment multiplied by the sample kurtosis coefficient. d The kurtosis test statistic is the sample kurtosis divided by the standard error of kurtosis. The 5%
confidence interval for kurtosis is sample kurtosis ± 1.96 times the standard error of kurtosis. e The D’Agostino-Pearson test statistic with χ2 2df. f The
p-value at the 5% level of significance.
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E.2 EUR/USD

E.2.1 Statistics Partitioned by Year

TABLE E.13: EUR/USD - Test for Departure from Normality

Year Mean Std. Dev. Skewness Sak ZbSk Kurtosis Kc
u ZdKu DP e p-valuef Nbr. of Obs.

Yr. 1 −0.0002 0.0029 −0.0193 −0.1283 0.5594 1.8621 3.4839 0.1752 261
Yr. 2 −0.0003 0.0043 −0.2371 −1.5727 0.6866 2.2855 7.6973 0.0213 261
Yr. 3 0.0006 0.0046 −0.0299 −0.1982 0.2025 0.6742 0.4938 0.7812 261
Yr. 4 −0.0002 0.0050 −0.1315 −0.8704 2.2885 7.6038 58.5749 0.0000 260
Yr. 5 −0.0001 0.0074 0.3532 2.3431 1.2940 4.3075 24.0443 0.0000 261
Yr. 6 −0.0007 0.0045 −0.5001 −3.3171 2.8240 9.4008 99.3783 0.0000 261
Yr. 7 0.0001 0.0044 0.0499 0.3308 0.4909 1.6341 2.7798 0.2491 261
Yr. 8 0.0000 0.0050 0.2997 1.9879 0.7963 2.6510 10.9794 0.0041 261
Yr. 9 −0.0001 0.0073 −0.3278 −2.1747 0.3232 1.0760 5.8870 0.0527 261
Yr. 10 0.0000 0.0047 −0.1379 −0.9129 −0.3865 1.2842 2.4826 0.2890 260
a Skewness statistic is the third central moment divided by the three-halves power of the second central moment multiplied by the sample skewness

coefficient. b The skewness test statistic is the sample skewness divided by the standard error of skewness. The 5% confidence interval for skewness is
sample skewness ± 1.96 times the standard error of skewness. c The kurtosis coefficient is the fourth central moment divided by the square of the second
central moment multiplied by the sample kurtosis coefficient. d The kurtosis test statistic is the sample kurtosis divided by the standard error of kurtosis.
The 5% confidence interval for kurtosis is sample kurtosis ± 1.96 times the standard error of kurtosis. e The D’Agostino-Pearson test statistic with χ2

2df. f The p-value at the 5% level of significance.

E.2.2 Statistics Partitioned by Days of The Week

TABLE E.14: EUR/USD - Test for Departure from Normality

Day of Week Mean Std. Dev. Skewness Sak ZbSk Kurtosis Kc
u ZdKu DP e p-valuef Nbr. of Obs.

Monday −0.0003 0.0047 −0.1363 −1.2749 2.7196 12.7439 164.0333 0.0000 522
Tuesday −0.0002 0.0051 −0.0174 −0.1631 1.3401 6.2796 39.4606 0.0000 522
Wednesday −0.0001 0.0058 −0.0767 −0.7178 2.1525 10.0864 102.2508 0.0000 522
Thursday 0.0003 0.0061 0.0344 0.3216 2.1233 9.9399 98.9053 0.0000 521
Friday −0.0001 0.0057 −0.0724 −0.6764 1.0055 4.7073 22.6165 0.0000 521
a Skewness statistic is the third central moment divided by the three-halves power of the second central moment multiplied by the sample skewness coefficient.
b The skewness test statistic is the sample skewness divided by the standard error of skewness. The 5% confidence interval for skewness is sample skewness ±
1.96 times the standard error of skewness. c The kurtosis coefficient is the fourth central moment divided by the square of the second central moment multiplied
by the sample kurtosis coefficient. d The kurtosis test statistic is the sample kurtosis divided by the standard error of kurtosis. The 5% confidence interval for
kurtosis is sample kurtosis ± 1.96 times the standard error of kurtosis. e The D’Agostino-Pearson test statistic with χ2 2df. f The p-value at the 5% level of
significance.
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E.2.3 Statistics Partitioned by Year and Days of The Week

TABLE E.15: EUR/USD - Test for Departure from Normality

Year 1 Mean Std. Dev. Skewness Sak ZbSk Kurtosis Kc
u ZdKu DP e p-valuef Nbr. of Obs.

Monday 0.0001 0.0028 0.1252 0.3789 1.5508 2.3856 5.8344 0.0541 52
Tuesday −0.0005 0.0024 0.1768 0.5351 0.2290 0.3523 0.4104 0.8145 52
Wednesday −0.0005 0.0029 −0.1925 −0.5880 0.0969 0.1504 0.3684 0.8319 53
Thursday −0.0003 0.0028 −0.3843 −1.1632 2.1701 3.3381 12.4958 0.0019 52
Friday 0.0004 0.0033 −0.0162 −0.0489 −0.5552 −0.8540 0.7317 0.6936 52
a Skewness statistic is the third central moment divided by the three-halves power of the second central moment multiplied by the sample skewness

coefficient. b The skewness test statistic is the sample skewness divided by the standard error of skewness. The 5% confidence interval for skewness is sample
skewness ± 1.96 times the standard error of skewness. c The kurtosis coefficient is the fourth central moment divided by the square of the second central
moment multiplied by the sample kurtosis coefficient. d The kurtosis test statistic is the sample kurtosis divided by the standard error of kurtosis. The 5%
confidence interval for kurtosis is sample kurtosis ± 1.96 times the standard error of kurtosis. e The D’Agostino-Pearson test statistic with χ2 2df. f The
p-value at the 5% level of significance.

TABLE E.16: EUR/USD - Test for Departure from Normality

Year 2 Mean Std. Dev. Skewness Sak ZbSk Kurtosis Kc
u ZdKu DP e p-valuef Nbr. of Obs.

Monday 0.0006 0.0034 −0.6939 −2.1000 0.8997 1.3839 6.3251 0.0423 52
Tuesday −0.0013 0.0038 0.2433 0.7432 −0.3543 −0.5498 0.8548 0.6523 53
Wednesday −0.0005 0.0045 0.1436 0.4347 −0.0138 −0.0212 0.1894 0.9096 52
Thursday −0.0004 0.0052 −0.8252 −2.4975 1.8211 2.8013 14.0852 0.0009 52
Friday −0.0001 0.0045 0.2619 0.7925 −0.2816 −0.4332 0.8158 0.6650 52
a Skewness statistic is the third central moment divided by the three-halves power of the second central moment multiplied by the sample skewness

coefficient. b The skewness test statistic is the sample skewness divided by the standard error of skewness. The 5% confidence interval for skewness is sample
skewness ± 1.96 times the standard error of skewness. c The kurtosis coefficient is the fourth central moment divided by the square of the second central
moment multiplied by the sample kurtosis coefficient. d The kurtosis test statistic is the sample kurtosis divided by the standard error of kurtosis. The 5%
confidence interval for kurtosis is sample kurtosis ± 1.96 times the standard error of kurtosis. e The D’Agostino-Pearson test statistic with χ2 2df. f The
p-value at the 5% level of significance.

TABLE E.17: EUR/USD - Test for Departure from Normality

Year 3 Mean Std. Dev. Skewness Sak ZbSk Kurtosis Kc
u ZdKu DP e p-valuef Nbr. of Obs.

Monday −0.0001 0.0042 0.2826 0.8631 0.7769 1.2055 2.1983 0.3332 53
Tuesday 0.0008 0.0045 0.7539 2.2818 0.4726 0.7270 5.7351 0.0568 52
Wednesday 0.0006 0.0047 0.0728 0.2204 −0.2178 −0.3351 0.1608 0.9227 52
Thursday 0.0006 0.0047 −0.3513 −1.0633 0.4526 0.6962 1.6153 0.4459 52
Friday 0.0011 0.0047 0.4223 1.2779 0.0034 0.0052 1.6332 0.4419 52
a Skewness statistic is the third central moment divided by the three-halves power of the second central moment multiplied by the sample skewness

coefficient. b The skewness test statistic is the sample skewness divided by the standard error of skewness. The 5% confidence interval for skewness is sample
skewness ± 1.96 times the standard error of skewness. c The kurtosis coefficient is the fourth central moment divided by the square of the second central
moment multiplied by the sample kurtosis coefficient. d The kurtosis test statistic is the sample kurtosis divided by the standard error of kurtosis. The 5%
confidence interval for kurtosis is sample kurtosis ± 1.96 times the standard error of kurtosis. e The D’Agostino-Pearson test statistic with χ2 2df. f The
p-value at the 5% level of significance.
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TABLE E.18: EUR/USD - Test for Departure from Normality

Year 4 Mean Std. Dev. Skewness Sak ZbSk Kurtosis Kc
u ZdKu DP e p-valuef Nbr. of Obs.

Monday −0.0002 0.0042 −0.5493 −1.6623 0.3640 0.5598 3.0768 0.2147 52
Tuesday −0.0004 0.0044 0.7505 2.2713 0.4055 0.6238 5.5479 0.0624 52
Wednesday 0.0001 0.0047 −0.4674 −1.4146 −0.2090 −0.3215 2.1046 0.3491 52
Thursday 0.0004 0.0054 0.2038 0.6168 0.0938 1.4427 2.4619 0.2920 52
Friday −0.0009 0.0062 −0.3176 −0.9613 4.1403 6.3688 41.4861 0.0000 52
a Skewness statistic is the third central moment divided by the three-halves power of the second central moment multiplied by the sample skewness

coefficient. b The skewness test statistic is the sample skewness divided by the standard error of skewness. The 5% confidence interval for skewness is sample
skewness ± 1.96 times the standard error of skewness. c The kurtosis coefficient is the fourth central moment divided by the square of the second central
moment multiplied by the sample kurtosis coefficient. d The kurtosis test statistic is the sample kurtosis divided by the standard error of kurtosis. The 5%
confidence interval for kurtosis is sample kurtosis ± 1.96 times the standard error of kurtosis. e The D’Agostino-Pearson test statistic with χ2 2df. f The
p-value at the 5% level of significance.

TABLE E.19: EUR/USD - Test for Departure from Normality

Year 5 Mean Std. Dev. Skewness Sak ZbSk Kurtosis Kc
u ZdKu DP e p-valuef Nbr. of Obs.

Monday −0.0005 0.0064 0.7675 2.3228 1.7597 2.7069 12.7228 0.0017 52
Tuesday −0.0008 0.0069 0.2348 0.7106 0.8271 1.2723 2.1238 0.3458 52
Wednesday 0.0013 0.0080 0.3178 0.9619 0.8442 1.2986 2.6116 0.2710 52
Thursday 0.0006 0.0088 0.2514 0.7608 1.7697 2.7222 7.9891 0.0184 52
Friday −0.0010 0.0067 −0.0422 −0.1288 0.1118 0.1735 0.0467 0.9769 53
a Skewness statistic is the third central moment divided by the three-halves power of the second central moment multiplied by the sample skewness

coefficient. b The skewness test statistic is the sample skewness divided by the standard error of skewness. The 5% confidence interval for skewness is sample
skewness ± 1.96 times the standard error of skewness. c The kurtosis coefficient is the fourth central moment divided by the square of the second central
moment multiplied by the sample kurtosis coefficient. d The kurtosis test statistic is the sample kurtosis divided by the standard error of kurtosis. The 5%
confidence interval for kurtosis is sample kurtosis ± 1.96 times the standard error of kurtosis. e The D’Agostino-Pearson test statistic with χ2 2df. f The
p-value at the 5% level of significance.

TABLE E.20: EUR/USD - Test for Departure from Normality

Year 6 Mean Std. Dev. Skewness Sak ZbSk Kurtosis Kc
u ZdKu DP e p-valuef Nbr. of Obs.

Monday 0.0002 0.0033 0.8221 2.4880 2.1062 3.2399 16.6873 0.0002 52
Tuesday 0.0001 0.0042 0.8116 2.4562 1.2477 1.9193 9.7164 0.0078 52
Wednesday −0.0011 0.0047 0.0529 0.1602 1.7343 2.6678 7.1426 0.0281 52
Thursday −0.0011 0.0053 −1.2903 −3.9404 4.5412 7.0469 65.1859 0.0000 53
Friday −0.0017 0.0048 −0.8365 −2.5316 0.5646 0.8685 7.1633 0.0278 52
a Skewness statistic is the third central moment divided by the three-halves power of the second central moment multiplied by the sample skewness

coefficient. b The skewness test statistic is the sample skewness divided by the standard error of skewness. The 5% confidence interval for skewness is sample
skewness ± 1.96 times the standard error of skewness. c The kurtosis coefficient is the fourth central moment divided by the square of the second central
moment multiplied by the sample kurtosis coefficient. d The kurtosis test statistic is the sample kurtosis divided by the standard error of kurtosis. The 5%
confidence interval for kurtosis is sample kurtosis ± 1.96 times the standard error of kurtosis. e The D’Agostino-Pearson test statistic with χ2 2df. f The
p-value at the 5% level of significance.
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TABLE E.21: EUR/USD - Test for Departure from Normality

Year 7 Mean Std. Dev. Skewness Sak ZbSk Kurtosis Kc
u ZdKu DP e p-valuef Nbr. of Obs.

Monday 0.0003 0.0035 −1.2683 −3.8384 2.1824 3.3571 26.0031 0.0000 52
Tuesday 0.0004 0.0037 0.2686 0.8130 0.3129 0.4812 0.8925 0.6400 52
Wednesday −0.0003 0.0049 0.5230 1.5972 1.3923 2.1606 7.2191 0.0271 53
Thursday 0.0005 0.0058 −0.0112 −0.0339 −0.7437 −1.1440 1.3100 0.5194 52
Friday −0.0004 0.0037 −0.1304 −0.3946 −0.5820 −0.8953 0.9572 0.6197 52
a Skewness statistic is the third central moment divided by the three-halves power of the second central moment multiplied by the sample skewness

coefficient. b The skewness test statistic is the sample skewness divided by the standard error of skewness. The 5% confidence interval for skewness is sample
skewness ± 1.96 times the standard error of skewness. c The kurtosis coefficient is the fourth central moment divided by the square of the second central
moment multiplied by the sample kurtosis coefficient. d The kurtosis test statistic is the sample kurtosis divided by the standard error of kurtosis. The 5%
confidence interval for kurtosis is sample kurtosis ± 1.96 times the standard error of kurtosis. e The D’Agostino-Pearson test statistic with χ2 2df. f The
p-value at the 5% level of significance.

TABLE E.22: EUR/USD - Test for Departure from Normality

Year 8 Mean Std. Dev. Skewness Sak ZbSk Kurtosis Kc
u ZdKu DP e p-valuef Nbr. of Obs.

Monday −0.0003 0.0036 −0.2621 −0.7931 −0.5040 −0.7753 1.2302 0.5406 52
Tuesday −0.0001 0.0046 0.0718 0.2194 −0.4192 −0.6506 0.4714 0.7900 53
Wednesday −0.0007 0.0042 −0.1389 −0.4203 0.4583 0.7050 0.6737 0.7140 52
Thursday 0.0002 0.0057 0.1001 0.3030 0.3064 0.4713 0.3139 0.8547 52
Friday 0.0011 0.0064 0.4047 1.2248 0.3623 0.5574 1.8109 0.4044 52
a Skewness statistic is the third central moment divided by the three-halves power of the second central moment multiplied by the sample skewness

coefficient. b The skewness test statistic is the sample skewness divided by the standard error of skewness. The 5% confidence interval for skewness is sample
skewness ± 1.96 times the standard error of skewness. c The kurtosis coefficient is the fourth central moment divided by the square of the second central
moment multiplied by the sample kurtosis coefficient. d The kurtosis test statistic is the sample kurtosis divided by the standard error of kurtosis. The 5%
confidence interval for kurtosis is sample kurtosis ± 1.96 times the standard error of kurtosis. e The D’Agostino-Pearson test statistic with χ2 2df. f The
p-value at the 5% level of significance.

TABLE E.23: EUR/USD - Test for Departure from Normality

Year 9 Mean Std. Dev. Skewness Sak ZbSk Kurtosis Kc
u ZdKu DP e p-valuef Nbr. of Obs.

Monday −0.0014 0.0073 −0.2402 −0.7335 1.1942 1.8531 3.9720 0.1372 53
Tuesday 0.0013 0.0056 −0.1209 −0.3659 −0.0091 −0.0140 0.1341 0.9351 52
Wednesday −0.0011 0.0080 −0.3346 −1.0126 −0.1856 −0.2855 1.1068 0.5750 52
Thursday 0.0010 0.0074 −0.4594 −1.3905 1.1188 1.7210 4.8952 0.0865 52
Friday −0.0004 0.0076 −0.1251 −0.3787 −0.5202 −0.8002 0.7837 0.6758 52
a Skewness statistic is the third central moment divided by the three-halves power of the second central moment multiplied by the sample skewness

coefficient. b The skewness test statistic is the sample skewness divided by the standard error of skewness. The 5% confidence interval for skewness is sample
skewness ± 1.96 times the standard error of skewness. c The kurtosis coefficient is the fourth central moment divided by the square of the second central
moment multiplied by the sample kurtosis coefficient. d The kurtosis test statistic is the sample kurtosis divided by the standard error of kurtosis. The 5%
confidence interval for kurtosis is sample kurtosis ± 1.96 times the standard error of kurtosis. e The D’Agostino-Pearson test statistic with χ2 2df. f The
p-value at the 5% level of significance.
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TABLE E.24: EUR/USD - Test for Departure from Normality

Year 10 Mean Std. Dev. Skewness Sak ZbSk Kurtosis Kc
u ZdKu DP e p-valuef Nbr. of Obs.

Monday 0.0006 0.0070 −0.1577 −0.4774 −0.5576 −0.8577 0.9635 0.6177 52
Tuesday −0.0015 0.0083 −0.2603 −0.7877 −0.5268 −0.8103 1.2771 0.5281 52
Wednesday 0.0008 0.0084 −0.6930 −2.0975 1.6600 2.5534 10.9194 0.0043 52
Thursday 0.0014 0.0078 0.3393 1.0270 0.2477 0.3810 1.1998 0.5489 52
Friday 0.0006 0.0070 −0.1577 −0.4774 −0.5576 −0.8577 0.9635 0.6177 52
a Skewness statistic is the third central moment divided by the three-halves power of the second central moment multiplied by the sample skewness

coefficient. b The skewness test statistic is the sample skewness divided by the standard error of skewness. The 5% confidence interval for skewness is sample
skewness ± 1.96 times the standard error of skewness. c The kurtosis coefficient is the fourth central moment divided by the square of the second central
moment multiplied by the sample kurtosis coefficient. d The kurtosis test statistic is the sample kurtosis divided by the standard error of kurtosis. The 5%
confidence interval for kurtosis is sample kurtosis ± 1.96 times the standard error of kurtosis. e The D’Agostino-Pearson test statistic with χ2 2df. f The
p-value at the 5% level of significance.

E.3 GBP/USD

E.3.1 Statistics Partitioned by Year

TABLE E.25: GBP/USD - Test for Departure from Normality

Year Mean Std. Dev. Skewness Sak ZbSk Kurtosis Kc
u ZdKu DP e p-valuef Nbr. of Obs.

Yr. 1 0.0000 0.0050 0.6702 4.4454 2.3706 7.8916 82.0393 0.0000 261
Yr. 2 −0.0003 0.0050 0.0272 0.1804 0.7323 2.4377 5.9751 0.0504 261
Yr. 3 0.0005 0.0051 −1.6514 −10.9542 1.4440 4.8068 143.0994 0.0000 261
Yr. 4 −0.0006 0.0090 −3.1197 −20.6544 28.8453 95.8429 9612.4595 0.0000 260
Yr. 5 −0.0003 0.0054 0.1996 1.3241 0.5332 1.7750 4.9039 0.2454 261
Yr. 6 −0.0003 0.0037 −0.4079 −2.7059 1.7606 5.8608 41.6708 0.0000 261
Yr. 7 0.0003 0.0046 0.0558 0.3699 0.6497 2.1628 4.8146 0.0901 261
Yr. 8 −0.0001 0.0040 0.0371 0.2458 0.4307 1.4337 2.1160 0.3471 261
Yr. 9 −0.0001 0.0051 −0.2280 −1.5123 −0.0997 −0.3320 2.3974 0.3016 261
Yr. 10 0.0002 0.0030 −0.2845 −1.8835 0.3221 1.0701 4.6928 0.0957 260
a Skewness statistic is the third central moment divided by the three-halves power of the second central moment multiplied by the sample skewness

coefficient. b The skewness test statistic is the sample skewness divided by the standard error of skewness. The 5% confidence interval for skewness is
sample skewness ± 1.96 times the standard error of skewness. c The kurtosis coefficient is the fourth central moment divided by the square of the second
central moment multiplied by the sample kurtosis coefficient. d The kurtosis test statistic is the sample kurtosis divided by the standard error of kurtosis.
The 5% confidence interval for kurtosis is sample kurtosis ± 1.96 times the standard error of kurtosis. e The D’Agostino-Pearson test statistic with χ2

2df. f The p-value at the 5% level of significance.
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E.3.2 Statistics Partitioned by Days of The Week

TABLE E.26: GBP/USD - Test for Departure from Normality

Day of Week Mean Std. Dev. Skewness Sak ZbSk Kurtosis Kc
u ZdKu DP e p-valuef Nbr. of Obs.

Monday −0.0003 0.0048 −0.6230 −5.8280 6.0755 28.4693 844.4643 0.0000 522
Tuesday −0.0002 0.0053 0.3359 3.1420 2.7077 12.6878 170.8533 0.0000 522
Wednesday 0.0004 0.0053 0.0097 0.0907 0.7921 3.7117 13.7850 0.0010 522
Thursday 0.0002 0.0054 0.0812 0.7591 1.3767 6.4449 42.1129 0.0000 521
Friday −0.0004 0.0066 −3.9576 −36.9848 49.7516 232.9091 55 614.5103 0.0000 521
a Skewness statistic is the third central moment divided by the three-halves power of the second central moment multiplied by the sample skewness coefficient.
b The skewness test statistic is the sample skewness divided by the standard error of skewness. The 5% confidence interval for skewness is sample skewness ±
1.96 times the standard error of skewness. c The kurtosis coefficient is the fourth central moment divided by the square of the second central moment multiplied
by the sample kurtosis coefficient. d The kurtosis test statistic is the sample kurtosis divided by the standard error of kurtosis. The 5% confidence interval for
kurtosis is sample kurtosis ± 1.96 times the standard error of kurtosis. e The D’Agostino-Pearson test statistic with χ2 2df. f The p-value at the 5% level of
significance.

E.3.3 Statistics Partitioned by Year and Days of The Week

TABLE E.27: GBP/USD - Test for Departure from Normality

Year 1 Mean Std. Dev. Skewness Sak ZbSk Kurtosis Kc
u ZdKu DP e p-valuef Nbr. of Obs.

Monday −0.0010 0.0046 −0.5101 −1.5437 1.7234 2.6509 9.4104 0.0090 52
Tuesday 0.0001 0.0050 0.1866 0.5648 1.9118 2.9408 8.9672 0.0113 52
Wednesday 0.0004 0.0048 1.5004 4.5821 5.3491 8.3006 89.8958 0.0000 53
Thursday −0.0001 0.0051 0.9991 3.0239 2.9568 4.5483 29.8306 0.0000 52
Friday 0.0005 0.0054 0.9526 2.8829 0.7955 1.2236 9.8084 0.0074 52
a Skewness statistic is the third central moment divided by the three-halves power of the second central moment multiplied by the sample skewness

coefficient. b The skewness test statistic is the sample skewness divided by the standard error of skewness. The 5% confidence interval for skewness is sample
skewness ± 1.96 times the standard error of skewness. c The kurtosis coefficient is the fourth central moment divided by the square of the second central
moment multiplied by the sample kurtosis coefficient. d The kurtosis test statistic is the sample kurtosis divided by the standard error of kurtosis. The 5%
confidence interval for kurtosis is sample kurtosis ± 1.96 times the standard error of kurtosis. e The D’Agostino-Pearson test statistic with χ2 2df. f The
p-value at the 5% level of significance.
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TABLE E.28: GBP/USD - Test for Departure from Normality

Year 2 Mean Std. Dev. Skewness Sak ZbSk Kurtosis Kc
u ZdKu DP e p-valuef Nbr. of Obs.

Monday 0.0001 0.0046 −0.5964 −1.8049 0.3710 0.5707 3.5836 0.1667 52
Tuesday −0.0005 0.0047 0.1224 0.3739 −0.0738 −0.1145 0.1529 0.9264 53
Wednesday −0.0003 0.0051 0.2205 0.6673 0.3187 0.4903 0.6856 0.7098 52
Thursday −0.0006 0.0057 0.3665 1.1093 2.4072 3.7028 14.9413 0.0006 52
Friday 0.0001 0.0052 −0.1823 −0.5516 0.0834 0.1283 0.3207 0.8518 52
a Skewness statistic is the third central moment divided by the three-halves power of the second central moment multiplied by the sample skewness

coefficient. b The skewness test statistic is the sample skewness divided by the standard error of skewness. The 5% confidence interval for skewness is sample
skewness ± 1.96 times the standard error of skewness. c The kurtosis coefficient is the fourth central moment divided by the square of the second central
moment multiplied by the sample kurtosis coefficient. d The kurtosis test statistic is the sample kurtosis divided by the standard error of kurtosis. The 5%
confidence interval for kurtosis is sample kurtosis ± 1.96 times the standard error of kurtosis. e The D’Agostino-Pearson test statistic with χ2 2df. f The
p-value at the 5% level of significance.

TABLE E.29: GBP/USD - Test for Departure from Normality

Year 3 Mean Std. Dev. Skewness Sak ZbSk Kurtosis Kc
u ZdKu DP e p-valuef Nbr. of Obs.

Monday −0.0006 0.0045 −0.0167 −0.0509 −0.1715 −0.2661 0.0734 0.9640 53
Tuesday 0.0007 0.0053 1.2348 3.7371 3.6480 5.6114 45.4543 0.0000 52
Wednesday 0.0012 0.0047 0.8624 2.6101 1.4565 2.2404 11.8320 0.0027 52
Thursday 0.0009 0.0050 −0.4268 −1.2918 1.2399 1.9073 2.3066 0.0704 52
Friday 0.0001 0.0060 −0.0389 −0.1176 0.5979 0.9197 0.8596 0.6506 52
a Skewness statistic is the third central moment divided by the three-halves power of the second central moment multiplied by the sample skewness

coefficient. b The skewness test statistic is the sample skewness divided by the standard error of skewness. The 5% confidence interval for skewness is sample
skewness ± 1.96 times the standard error of skewness. c The kurtosis coefficient is the fourth central moment divided by the square of the second central
moment multiplied by the sample kurtosis coefficient. d The kurtosis test statistic is the sample kurtosis divided by the standard error of kurtosis. The 5%
confidence interval for kurtosis is sample kurtosis ± 1.96 times the standard error of kurtosis. e The D’Agostino-Pearson test statistic with χ2 2df. f The
p-value at the 5% level of significance.

TABLE E.30: GBP/USD - Test for Departure from Normality

Year 4 Mean Std. Dev. Skewness Sak ZbSk Kurtosis Kc
u ZdKu DP e p-valuef Nbr. of Obs.

Monday −0.0006 0.0084 −0.9101 −2.7543 4.8513 7.4625 63.2747 0.0000 52
Tuesday −0.0001 0.0093 0.4835 1.4634 1.2459 1.9164 5.8143 0.0546 52
Wednesday 0.0006 0.0051 −0.2389 −0.7229 −0.5324 −0.8189 1.1932 0.5507 52
Thursday 0.0004 0.0068 0.1678 0.5077 0.1518 0.2336 0.3123 0.8554 52
Friday −0.0031 0.0131 −4.7747 −14.4508 29.2578 45.0055 2234.3176 0.0000 52
a Skewness statistic is the third central moment divided by the three-halves power of the second central moment multiplied by the sample skewness

coefficient. b The skewness test statistic is the sample skewness divided by the standard error of skewness. The 5% confidence interval for skewness is sample
skewness ± 1.96 times the standard error of skewness. c The kurtosis coefficient is the fourth central moment divided by the square of the second central
moment multiplied by the sample kurtosis coefficient. d The kurtosis test statistic is the sample kurtosis divided by the standard error of kurtosis. The 5%
confidence interval for kurtosis is sample kurtosis ± 1.96 times the standard error of kurtosis. e The D’Agostino-Pearson test statistic with χ2 2df. f The
p-value at the 5% level of significance.

172



APPENDIX E. TEST FOR DEPARTURE FROM NORMALITY F. Josephidou

TABLE E.31: GBP/USD - Test for Departure from Normality

Year 5 Mean Std. Dev. Skewness Sak ZbSk Kurtosis Kc
u ZdKu DP e p-valuef Nbr. of Obs.

Monday 0.0000 0.0041 0.8440 2.5544 0.5002 0.7694 7.1169 0.0285 52
Tuesday −0.0011 0.0051 0.3384 1.0241 −0.6860 −1.0553 2.1625 0.3392 52
Wednesday 0.0014 0.0063 0.0941 0.2848 0.3407 0.5241 0.3558 0.8370 52
Thursday −0.0005 0.0050 −0.2879 −0.8713 1.5084 2.3203 6.1429 0.0464 52
Friday −0.0011 0.0060 0.1519 0.4638 0.3706 0.5751 0.5459 0.7611 53
a Skewness statistic is the third central moment divided by the three-halves power of the second central moment multiplied by the sample skewness

coefficient. b The skewness test statistic is the sample skewness divided by the standard error of skewness. The 5% confidence interval for skewness is sample
skewness ± 1.96 times the standard error of skewness. c The kurtosis coefficient is the fourth central moment divided by the square of the second central
moment multiplied by the sample kurtosis coefficient. d The kurtosis test statistic is the sample kurtosis divided by the standard error of kurtosis. The 5%
confidence interval for kurtosis is sample kurtosis ± 1.96 times the standard error of kurtosis. e The D’Agostino-Pearson test statistic with χ2 2df. f The
p-value at the 5% level of significance.

TABLE E.32: GBP/USD - Test for Departure from Normality

Year 6 Mean Std. Dev. Skewness Sak ZbSk Kurtosis Kc
u ZdKu DP e p-valuef Nbr. of Obs.

Monday −0.0001 0.0034 −0.9899 −2.9960 4.4069 6.7789 54.9293 0.0000 52
Tuesday 0.0001 0.0039 −0.2303 −0.6969 1.0005 1.5391 2.8544 0.2400 52
Wednesday 0.0000 0.0038 −0.6146 1.8601 0.5832 0.8970 4.2647 0.1186 52
Thursday −0.0002 0.0039 0.4638 1.4165 1.3017 2.0199 6.0865 0.0477 53
Friday −0.0013 0.0034 −1.4736 −4.4597 3.8438 5.9127 54.8493 0.0000 52
a Skewness statistic is the third central moment divided by the three-halves power of the second central moment multiplied by the sample skewness

coefficient. b The skewness test statistic is the sample skewness divided by the standard error of skewness. The 5% confidence interval for skewness is sample
skewness ± 1.96 times the standard error of skewness. c The kurtosis coefficient is the fourth central moment divided by the square of the second central
moment multiplied by the sample kurtosis coefficient. d The kurtosis test statistic is the sample kurtosis divided by the standard error of kurtosis. The 5%
confidence interval for kurtosis is sample kurtosis ± 1.96 times the standard error of kurtosis. e The D’Agostino-Pearson test statistic with χ2 2df. f The
p-value at the 5% level of significance.

TABLE E.33: GBP/USD - Test for Departure from Normality

Year 7 Mean Std. Dev. Skewness Sak ZbSk Kurtosis Kc
u ZdKu DP e p-valuef Nbr. of Obs.

Monday 0.0005 0.0034 −1.1085 −0.3284 −0.0120 −0.0184 0.1082 0.9473 52
Tuesday −0.0004 0.0034 −0.3323 −1.0057 −0.5787 −0.8902 1.8038 0.4058 52
Wednesday 0.0008 0.0055 −0.0451 −0.1376 0.2399 0.3723 0.1576 0.9242 53
Thursday 0.0014 0.0053 0.0462 0.1399 0.6276 0.9654 0.9516 0.6214 52
Friday −0.0009 0.0046 −0.0545 −0.1648 0.0430 0.0661 0.0315 0.9844 52
a Skewness statistic is the third central moment divided by the three-halves power of the second central moment multiplied by the sample skewness

coefficient. b The skewness test statistic is the sample skewness divided by the standard error of skewness. The 5% confidence interval for skewness is sample
skewness ± 1.96 times the standard error of skewness. c The kurtosis coefficient is the fourth central moment divided by the square of the second central
moment multiplied by the sample kurtosis coefficient. d The kurtosis test statistic is the sample kurtosis divided by the standard error of kurtosis. The 5%
confidence interval for kurtosis is sample kurtosis ± 1.96 times the standard error of kurtosis. e The D’Agostino-Pearson test statistic with χ2 2df. f The
p-value at the 5% level of significance.
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TABLE E.34: GBP/USD - Test for Departure from Normality

Year 8 Mean Std. Dev. Skewness Sak ZbSk Kurtosis Kc
u ZdKu DP e p-valuef Nbr. of Obs.

Monday −0.0003 0.0032 −0.4516 −1.3666 0.2466 0.3794 2.0116 0.3658 52
Tuesday −0.0002 0.0032 −0.3718 −1.1354 0.4185 0.6494 1.7109 0.4251 53
Wednesday −0.0006 0.0037 −0.4270 −1.2923 0.5343 0.8219 2.3455 0.3095 52
Thursday 0.0003 0.0043 0.1176 0.3558 0.3584 0.5512 0.4305 0.8063 52
Friday 0.0004 0.0054 0.1181 0.3574 −0.5414 −0.8327 0.8212 0.6633 52
a Skewness statistic is the third central moment divided by the three-halves power of the second central moment multiplied by the sample skewness

coefficient. b The skewness test statistic is the sample skewness divided by the standard error of skewness. The 5% confidence interval for skewness is sample
skewness ± 1.96 times the standard error of skewness. c The kurtosis coefficient is the fourth central moment divided by the square of the second central
moment multiplied by the sample kurtosis coefficient. d The kurtosis test statistic is the sample kurtosis divided by the standard error of kurtosis. The 5%
confidence interval for kurtosis is sample kurtosis ± 1.96 times the standard error of kurtosis. e The D’Agostino-Pearson test statistic with χ2 2df. f The
p-value at the 5% level of significance.

TABLE E.35: GBP/USD - Test for Departure from Normality

Year 9 Mean Std. Dev. Skewness Sak ZbSk Kurtosis Kc
u ZdKu DP e p-valuef Nbr. of Obs.

Monday −0.0009 0.0046 −0.0141 −0.0432 −0.2431 −0.3773 0.1442 0.9304 53
Tuesday 0.0003 0.0050 −0.1697 −0.5135 −0.2986 −0.4593 0.4746 0.7888 52
Wednesday −0.0008 0.0066 −0.2972 −0.8995 −0.4325 −0.6653 1.2518 0.5348 52
Thursday −0.0001 0.0048 −0.0524 −0.1585 −0.3178 −0.4889 0.2642 0.8763 52
Friday 0.0011 0.0044 0.0523 0.1587 −0.6116 −0.0941 0.9102 0.6344 52
a Skewness statistic is the third central moment divided by the three-halves power of the second central moment multiplied by the sample skewness

coefficient. b The skewness test statistic is the sample skewness divided by the standard error of skewness. The 5% confidence interval for skewness is sample
skewness ± 1.96 times the standard error of skewness. c The kurtosis coefficient is the fourth central moment divided by the square of the second central
moment multiplied by the sample kurtosis coefficient. d The kurtosis test statistic is the sample kurtosis divided by the standard error of kurtosis. The 5%
confidence interval for kurtosis is sample kurtosis ± 1.96 times the standard error of kurtosis. e The D’Agostino-Pearson test statistic with χ2 2df. f The
p-value at the 5% level of significance.

TABLE E.36: GBP/USD - Test for Departure from Normality

Year 10 Mean Std. Dev. Skewness Sak ZbSk Kurtosis Kc
u ZdKu DP e p-valuef Nbr. of Obs.

Monday 0.0002 0.0022 −0.2378 −0.7198 −0.6340 −0.9752 1.4693 0.4797 52
Tuesday −0.0005 0.0063 −0.2096 −0.6344 −0.5951 −0.9155 1.2406 0.5378 52
Wednesday 0.0010 0.0062 −0.7096 −2.1477 0.4045 0.6222 4.9998 0.0821 52
Thursday 0.0007 0.0071 −0.3672 −1.1112 1.3988 2.1517 5.8648 0.0533 52
Friday 0.0002 0.0071 −0.2378 −0.7198 −0.6340 −0.9752 1.4692 0.4797 52
a Skewness statistic is the third central moment divided by the three-halves power of the second central moment multiplied by the sample skewness

coefficient. b The skewness test statistic is the sample skewness divided by the standard error of skewness. The 5% confidence interval for skewness is sample
skewness ± 1.96 times the standard error of skewness. c The kurtosis coefficient is the fourth central moment divided by the square of the second central
moment multiplied by the sample kurtosis coefficient. d The kurtosis test statistic is the sample kurtosis divided by the standard error of kurtosis. The 5%
confidence interval for kurtosis is sample kurtosis ± 1.96 times the standard error of kurtosis. e The D’Agostino-Pearson test statistic with χ2 2df. f The
p-value at the 5% level of significance.
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E.4 USD/JPY

E.4.1 Statistics Partitioned by Year

TABLE E.37: USD/JPY - Test for Departure from Normality

Year Mean Std. Dev. Skewness Sak ZbSk Kurtosis Kc
u ZdKu DP e p-valuef Nbr. of Obs.

Yr. 1 0.0000 0.0033 −0.3123 −2.0714 2.0026 6.6665 48.7331 0.0000 261
Yr. 2 0.0001 0.0038 −0.0048 −0.0318 0.5692 1.8947 3.5909 0.1661 261
Yr. 3 −0.0002 0.0047 −0.1427 −0.9468 1.1561 3.8485 15.7076 0.0004 261
Yr. 4 0.0000 0.0079 −0.6874 −4.5510 3.1559 10.4860 130.6683 0.0000 260
Yr. 5 −0.0002 0.0052 −0.9289 −6.1612 4.6360 15.4328 276.1332 0.0000 261
Yr. 6 0.0006 0.0051 0.6808 4.5156 3.9582 13.1766 194.0132 0.0000 261
Yr. 7 0.0003 0.0073 0.0871 0.5778 2.3008 7.6591 58.9953 0.0000 261
Yr. 8 0.0006 0.0052 0.4336 2.8763 0.6525 2.1720 12.9904 0.0015 261
Yr. 9 −0.0002 0.0057 0.3734 2.4771 8.9146 29.6760 8886.8038 0.0000 261
Yr. 10 −0.0004 0.0064 −0.0063 −0.0419 6.0722 20.1758 407.0650 0.0000 260
a Skewness statistic is the third central moment divided by the three-halves power of the second central moment multiplied by the sample skewness

coefficient. b The skewness test statistic is the sample skewness divided by the standard error of skewness. The 5% confidence interval for skewness is
sample skewness ± 1.96 times the standard error of skewness. c The kurtosis coefficient is the fourth central moment divided by the square of the second
central moment multiplied by the sample kurtosis coefficient. d The kurtosis test statistic is the sample kurtosis divided by the standard error of kurtosis.
The 5% confidence interval for kurtosis is sample kurtosis ± 1.96 times the standard error of kurtosis. e The D’Agostino-Pearson test statistic with χ2

2df. f The p-value at the 5% level of significance.

E.4.2 Statistics Partitioned by Days of The Week

TABLE E.38: USD/JPY - Test for Departure from Normality

Day of Week Mean Std. Dev. Skewness Sak ZbSk Kurtosis Kc
u ZdKu DP e p-valuef Nbr. of Obs.

Monday 0.0000 0.0051 0.3316 3.1017 6.3008 29.5248 881.3361 0.0000 522
Tuesday 0.0002 0.0052 −0.4167 −0.8981 2.1573 10.1088 117.3826 0.0000 522
Wednesday 0.0003 0.0057 −0.0317 −0.2963 4.3373 20.3239 413.1507 0.0000 522
Thursday −0.0001 0.0061 −0.1735 −1.6218 6.2583 29.2980 861.0059 0.0000 521
Friday −0.0001 0.0060 −0.3173 −2.9656 5.5031 25.7626 672.5080 0.0000 521
a Skewness statistic is the third central moment divided by the three-halves power of the second central moment multiplied by the sample skewness coefficient.
b The skewness test statistic is the sample skewness divided by the standard error of skewness. The 5% confidence interval for skewness is sample skewness ±
1.96 times the standard error of skewness. c The kurtosis coefficient is the fourth central moment divided by the square of the second central moment multiplied
by the sample kurtosis coefficient. d The kurtosis test statistic is the sample kurtosis divided by the standard error of kurtosis. The 5% confidence interval for
kurtosis is sample kurtosis ± 1.96 times the standard error of kurtosis. e The D’Agostino-Pearson test statistic with χ2 2df. f The p-value at the 5% level of
significance.
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E.4.3 Statistics Partitioned by Year and Days of The Week

TABLE E.39: USD/JPY - Test for Departure from Normality

Year 1 Mean Std. Dev. Skewness Sak ZbSk Kurtosis Kc
u ZdKu DP e p-valuef Nbr. of Obs.

Monday 0.0040 0.0027 −0.3523 −1.0663 0.3806 0.5855 1.4798 0.4772 52
Tuesday 0.0002 0.0034 1.3310 4.0282 3.4507 5.3808 44.4010 0.0000 52
Wednesday 0.0005 0.0030 −0.2763 −0.8439 0.3656 0.5673 1.0340 0.5963 53
Thursday −0.0003 0.0038 −0.8157 −2.4687 1.5958 2.4547 12.1200 0.0023 52
Friday −0.0009 0.0035 −0.9515 −2.8799 1.6590 2.5519 14.8058 0.0006 52
a Skewness statistic is the third central moment divided by the three-halves power of the second central moment multiplied by the sample skewness

coefficient. b The skewness test statistic is the sample skewness divided by the standard error of skewness. The 5% confidence interval for skewness is sample
skewness ± 1.96 times the standard error of skewness. c The kurtosis coefficient is the fourth central moment divided by the square of the second central
moment multiplied by the sample kurtosis coefficient. d The kurtosis test statistic is the sample kurtosis divided by the standard error of kurtosis. The 5%
confidence interval for kurtosis is sample kurtosis ± 1.96 times the standard error of kurtosis. e The D’Agostino-Pearson test statistic with χ2 2df. f The
p-value at the 5% level of significance.

TABLE E.40: USD/JPY - Test for Departure from Normality

Year 2 Mean Std. Dev. Skewness Sak ZbSk Kurtosis Kc
u ZdKu DP e p-valuef Nbr. of Obs.

Monday 0.0004 0.0034 0.1799 0.5445 0.1275 0.1961 0.3350 0.8458 52
Tuesday 0.0012 0.0033 −0.2926 −0.8934 0.0242 0.0375 0.7996 0.6705 53
Wednesday 0.0005 0.0043 0.6582 1.9920 1.0929 1.6811 6.7943 0.0335 52
Thursday −0.0011 0.0044 −0.3357 −1.0159 −0.3875 −0.5961 1.3873 0.4997 52
Friday −0.0003 0.0034 −0.0068 −0.0205 0.7257 1.1164 1.2467 0.5361 52
a Skewness statistic is the third central moment divided by the three-halves power of the second central moment multiplied by the sample skewness

coefficient. b The skewness test statistic is the sample skewness divided by the standard error of skewness. The 5% confidence interval for skewness is sample
skewness ± 1.96 times the standard error of skewness. c The kurtosis coefficient is the fourth central moment divided by the square of the second central
moment multiplied by the sample kurtosis coefficient. d The kurtosis test statistic is the sample kurtosis divided by the standard error of kurtosis. The 5%
confidence interval for kurtosis is sample kurtosis ± 1.96 times the standard error of kurtosis. e The D’Agostino-Pearson test statistic with χ2 2df. f The
p-value at the 5% level of significance.

TABLE E.41: USD/JPY - Test for Departure from Normality

Year 3 Mean Std. Dev. Skewness Sak ZbSk Kurtosis Kc
u ZdKu DP e p-valuef Nbr. of Obs.

Monday 0.0007 0.0040 0.5494 1.6779 1.8493 2.8697 11.0507 0.0040 53
Tuesday 0.0002 0.0049 −0.1776 −0.5374 0.1115 0.1715 0.3182 0.8529 52
Wednesday −0.0011 0.0058 −0.8749 −2.6479 1.2089 1.8596 10.4695 0.0053 52
Thursday 0.0000 0.0043 0.3120 0.9444 0.3123 0.4804 1.1227 0.5704 52
Friday −0.0009 0.0040 0.2088 0.6318 −0.5380 −0.8276 1.0841 0.5816 52
a Skewness statistic is the third central moment divided by the three-halves power of the second central moment multiplied by the sample skewness

coefficient. b The skewness test statistic is the sample skewness divided by the standard error of skewness. The 5% confidence interval for skewness is sample
skewness ± 1.96 times the standard error of skewness. c The kurtosis coefficient is the fourth central moment divided by the square of the second central
moment multiplied by the sample kurtosis coefficient. d The kurtosis test statistic is the sample kurtosis divided by the standard error of kurtosis. The 5%
confidence interval for kurtosis is sample kurtosis ± 1.96 times the standard error of kurtosis. e The D’Agostino-Pearson test statistic with χ2 2df. f The
p-value at the 5% level of significance.
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TABLE E.42: USD/JPY - Test for Departure from Normality

Year 4 Mean Std. Dev. Skewness Sak ZbSk Kurtosis Kc
u ZdKu DP e p-valuef Nbr. of Obs.

Monday 0.0000 0.0074 0.5152 1.5592 0.8970 1.3798 4.3351 0.1145 52
Tuesday 0.0004 0.0073 −0.1292 −0.3910 −0.2822 −0.4340 0.3413 0.8431 52
Wednesday 0.0008 0.0066 0.6896 2.0870 0.8587 1.3208 6.1001 0.0474 52
Thursday −0.0002 0.0084 −1.0099 −3.0565 2.4051 3.6996 23.0291 0.0000 52
Friday −0.0010 0.0097 −1.5129 −4.5789 4.8681 7.4884 77.0422 0.0000 52
a Skewness statistic is the third central moment divided by the three-halves power of the second central moment multiplied by the sample skewness

coefficient. b The skewness test statistic is the sample skewness divided by the standard error of skewness. The 5% confidence interval for skewness is sample
skewness ± 1.96 times the standard error of skewness. c The kurtosis coefficient is the fourth central moment divided by the square of the second central
moment multiplied by the sample kurtosis coefficient. d The kurtosis test statistic is the sample kurtosis divided by the standard error of kurtosis. The 5%
confidence interval for kurtosis is sample kurtosis ± 1.96 times the standard error of kurtosis. e The D’Agostino-Pearson test statistic with χ2 2df. f The
p-value at the 5% level of significance.

TABLE E.43: USD/JPY - Test for Departure from Normality

Year 5 Mean Std. Dev. Skewness Sak ZbSk Kurtosis Kc
u ZdKu DP e p-valuef Nbr. of Obs.

Monday −0.0002 0.0060 −2.4537 −7.4263 11.1796 17.1970 350.8858 0.0000 52
Tuesday −0.0003 0.0043 −0.3493 −1.0572 2.9455 4.5309 21.6469 0.0000 52
Wednesday −0.0011 0.0060 −1.0725 −3.2459 0.8439 1.2981 12.2209 0.0022 52
Thursday −0.0001 0.0040 −0.1555 −0.4707 0.0650 0.0999 0.2316 0.8907 52
Friday 0.0006 0.0057 0.4864 1.4855 1.1201 1.7382 5.2278 0.0732 53
a Skewness statistic is the third central moment divided by the three-halves power of the second central moment multiplied by the sample skewness

coefficient. b The skewness test statistic is the sample skewness divided by the standard error of skewness. The 5% confidence interval for skewness is sample
skewness ± 1.96 times the standard error of skewness. c The kurtosis coefficient is the fourth central moment divided by the square of the second central
moment multiplied by the sample kurtosis coefficient. d The kurtosis test statistic is the sample kurtosis divided by the standard error of kurtosis. The 5%
confidence interval for kurtosis is sample kurtosis ± 1.96 times the standard error of kurtosis. e The D’Agostino-Pearson test statistic with χ2 2df. f The
p-value at the 5% level of significance.

TABLE E.44: USD/JPY - Test for Departure from Normality

Year 6 Mean Std. Dev. Skewness Sak ZbSk Kurtosis Kc
u ZdKu DP e p-valuef Nbr. of Obs.

Monday 0.0003 0.0041 0.5132 1.5532 2.8327 4.3574 21.3991 0.0000 52
Tuesday −0.0001 0.0050 −0.5570 −1.6858 0.6063 0.9326 3.7117 0.1563 52
Wednesday 0.0008 0.0058 0.3102 0.9388 1.7879 2.7502 8.4450 0.0147 52
Thursday 0.0002 0.0041 −0.4226 −1.2907 1.0870 1.6868 4.5113 0.1048 53
Friday 0.0016 0.0062 1.7594 5.3248 5.8470 8.9941 109.2466 0.0000 52
a Skewness statistic is the third central moment divided by the three-halves power of the second central moment multiplied by the sample skewness

coefficient. b The skewness test statistic is the sample skewness divided by the standard error of skewness. The 5% confidence interval for skewness is sample
skewness ± 1.96 times the standard error of skewness. c The kurtosis coefficient is the fourth central moment divided by the square of the second central
moment multiplied by the sample kurtosis coefficient. d The kurtosis test statistic is the sample kurtosis divided by the standard error of kurtosis. The 5%
confidence interval for kurtosis is sample kurtosis ± 1.96 times the standard error of kurtosis. e The D’Agostino-Pearson test statistic with χ2 2df. f The
p-value at the 5% level of significance.
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TABLE E.45: USD/JPY - Test for Departure from Normality

Year 7 Mean Std. Dev. Skewness Sak ZbSk Kurtosis Kc
u ZdKu DP e p-valuef Nbr. of Obs.

Monday −0.0010 0.0067 0.0591 0.1790 1.1059 1.7011 2.9257 0.2316 52
Tuesday 0.0008 0.0067 −1.4732 −4.4586 6.2062 9.5467 111.0184 0.0000 52
Wednesday 0.0000 0.0064 −0.2292 −0.6999 0.3318 0.5149 0.7550 0.6856 53
Thursday 0.0013 0.0091 0.7426 2.2474 2.7659 4.2546 23.1522 0.0000 52
Friday 0.0005 0.0072 −0.0241 −0.0730 −0.7126 −1.0961 1.2067 0.5470 52
a Skewness statistic is the third central moment divided by the three-halves power of the second central moment multiplied by the sample skewness

coefficient. b The skewness test statistic is the sample skewness divided by the standard error of skewness. The 5% confidence interval for skewness is sample
skewness ± 1.96 times the standard error of skewness. c The kurtosis coefficient is the fourth central moment divided by the square of the second central
moment multiplied by the sample kurtosis coefficient. d The kurtosis test statistic is the sample kurtosis divided by the standard error of kurtosis. The 5%
confidence interval for kurtosis is sample kurtosis ± 1.96 times the standard error of kurtosis. e The D’Agostino-Pearson test statistic with χ2 2df. f The
p-value at the 5% level of significance.

TABLE E.46: USD/JPY - Test for Departure from Normality

Year 8 Mean Std. Dev. Skewness Sak ZbSk Kurtosis Kc
u ZdKu DP e p-valuef Nbr. of Obs.

Monday −0.0004 0.0048 1.1033 3.3391 2.4864 3.8246 25.7772 0.0000 52
Tuesday 0.0002 0.0049 −0.0898 −0.2744 0.4389 0.6811 0.5392 0.7637 53
Wednesday 0.0016 0.0050 0.1727 0.5228 −0.7047 −1.0840 1.4484 0.4847 52
Thursday 0.0009 0.0060 0.7129 2.1577 1.5088 2.3209 10.0424 0.0066 52
Friday 0.0008 0.0054 0.1568 0.4747 −0.0594 −0.0914 0.2337 0.8897 52
a Skewness statistic is the third central moment divided by the three-halves power of the second central moment multiplied by the sample skewness

coefficient. b The skewness test statistic is the sample skewness divided by the standard error of skewness. The 5% confidence interval for skewness is sample
skewness ± 1.96 times the standard error of skewness. c The kurtosis coefficient is the fourth central moment divided by the square of the second central
moment multiplied by the sample kurtosis coefficient. d The kurtosis test statistic is the sample kurtosis divided by the standard error of kurtosis. The 5%
confidence interval for kurtosis is sample kurtosis ± 1.96 times the standard error of kurtosis. e The D’Agostino-Pearson test statistic with χ2 2df. f The
p-value at the 5% level of significance.

TABLE E.47: USD/JPY - Test for Departure from Normality

Year 9 Mean Std. Dev. Skewness Sak ZbSk Kurtosis Kc
u ZdKu DP e p-valuef Nbr. of Obs.

Monday 0.0001 0.0054 3.5821 10.9396 20.0292 31.0809 1085.6985 0.0000 53
Tuesday 0.0001 0.0056 −0.5396 −1.6331 1.9336 2.9743 11.5135 0.0032 52
Wednesday −0.0004 0.0057 −3.4524 −10.4488 19.6665 30.2518 1024.3493 0.0000 52
Thursday 0.0003 0.0057 1.8675 5.6520 7.4748 11.4980 164.1490 0.0000 52
Friday −0.0010 0.0062 0.7900 2.3910 2.6910 4.1393 22.8509 0.0000 52
a Skewness statistic is the third central moment divided by the three-halves power of the second central moment multiplied by the sample skewness

coefficient. b The skewness test statistic is the sample skewness divided by the standard error of skewness. The 5% confidence interval for skewness is sample
skewness ± 1.96 times the standard error of skewness. c The kurtosis coefficient is the fourth central moment divided by the square of the second central
moment multiplied by the sample kurtosis coefficient. d The kurtosis test statistic is the sample kurtosis divided by the standard error of kurtosis. The 5%
confidence interval for kurtosis is sample kurtosis ± 1.96 times the standard error of kurtosis. e The D’Agostino-Pearson test statistic with χ2 2df. f The
p-value at the 5% level of significance.
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TABLE E.48: USD/JPY - Test for Departure from Normality

Year 10 Mean Std. Dev. Skewness Sak ZbSk Kurtosis Kc
u ZdKu DP e p-valuef Nbr. of Obs.

Monday −0.0001 0.0055 0.0245 0.0741 0.5357 0.8240 0.6845 0.7102 52
Tuesday −0.0011 0.0057 0.2980 0.9020 −0.4822 −0.7417 1.3637 0.5057 52
Wednesday 0.0014 0.0074 1.6908 5.1172 4.7540 7.3128 79.6628 0.0000 52
Thursday −0.0016 0.0080 −1.6865 −5.1042 6.4534 9.9269 124.5961 0.0000 52
Friday −0.0001 0.0055 0.0245 0.0741 0.5357 0.8240 0.6845 0.7102 52
a Skewness statistic is the third central moment divided by the three-halves power of the second central moment multiplied by the sample skewness

coefficient. b The skewness test statistic is the sample skewness divided by the standard error of skewness. The 5% confidence interval for skewness is sample
skewness ± 1.96 times the standard error of skewness. c The kurtosis coefficient is the fourth central moment divided by the square of the second central
moment multiplied by the sample kurtosis coefficient. d The kurtosis test statistic is the sample kurtosis divided by the standard error of kurtosis. The 5%
confidence interval for kurtosis is sample kurtosis ± 1.96 times the standard error of kurtosis. e The D’Agostino-Pearson test statistic with χ2 2df. f The
p-value at the 5% level of significance.

E.5 EUR/JPY

E.5.1 Statistics Partitioned by Year

TABLE E.49: EUR/JPY - Test for Departure from Normality

Year Mean Std. Dev. Skewness Sak ZbSk Kurtosis Kc
u ZdKu DP e p-valuef Nbr. of Obs.

Yr. 1 −0.0002 0.0036 −0.3317 −2.2004 1.3090 4.3576 23.8300 0.0000 261
Yr. 2 −0.0002 0.0047 −0.3071 −2.0370 1.1589 3.8579 19.0330 0.0000 261
Yr. 3 0.0004 0.0050 −0.3760 −2.4942 1.6211 5.3965 35.3435 0.0000 261
Yr. 4 −0.0002 0.0077 −2.0037 −13.2653 15.8087 52.5268 2935.0283 0.0000 260
Yr. 5 −0.0003 0.0059 0.3864 2.5632 1.6417 5.4651 36.4367 0.0000 261
Yr. 6 −0.0001 0.0054 −0.2721 −1.8048 2.9094 9.6853 97.0624 0.0000 261
Yr. 7 0.0004 0.0073 0.4051 2.6871 4.7772 15.9029 260.1239 0.0000 261
Yr. 8 0.0007 0.0076 0.5087 3.3741 0.7225 2.4052 17.1693 0.0002 261
Yr. 9 −0.0003 0.0085 −0.2077 −1.3776 1.8778 6.2510 40.9729 0.0000 261
Yr. 10 −0.0004 0.0094 −0.6110 −4.0453 3.2074 10.6569 129.9344 0.0000 260
a Skewness statistic is the third central moment divided by the three-halves power of the second central moment multiplied by the sample skewness

coefficient. b The skewness test statistic is the sample skewness divided by the standard error of skewness. The 5% confidence interval for skewness is
sample skewness ± 1.96 times the standard error of skewness. c The kurtosis coefficient is the fourth central moment divided by the square of the second
central moment multiplied by the sample kurtosis coefficient. d The kurtosis test statistic is the sample kurtosis divided by the standard error of kurtosis.
The 5% confidence interval for kurtosis is sample kurtosis ± 1.96 times the standard error of kurtosis. e The D’Agostino-Pearson test statistic with χ2

2df. f The p-value at the 5% level of significance.
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E.5.2 Statistics Partitioned by Days of The Week

TABLE E.50: EUR/JPY - Test for Departure from Normality

Day of Week Mean Std. Dev. Skewness Sak ZbSk Kurtosis Kc
u ZdKu DP e p-valuef Nbr. of Obs.

Monday −0.0003 0.0061 −0.2567 −2.4012 2.6626 12.4765 161.4276 0.0000 522
Tuesday 0.0000 0.0064 −0.4245 −3.9704 1.7495 8.1979 82.9700 0.0000 522
Wednesday 0.0002 0.0065 −0.3555 −3.3256 4.2037 19.6982 399.0780 0.0000 522
Thursday −0.0002 0.0076 −0.0385 −0.3596 5.6734 26.5594 705.5334 0.0000 521
Friday −0.0002 0.0071 −0.8738 −8.1659 12.0113 56.2303 3228.5249 0.0000 521
a Skewness statistic is the third central moment divided by the three-halves power of the second central moment multiplied by the sample skewness coefficient.
b The skewness test statistic is the sample skewness divided by the standard error of skewness. The 5% confidence interval for skewness is sample skewness ±
1.96 times the standard error of skewness. c The kurtosis coefficient is the fourth central moment divided by the square of the second central moment multiplied
by the sample kurtosis coefficient. d The kurtosis test statistic is the sample kurtosis divided by the standard error of kurtosis. The 5% confidence interval for
kurtosis is sample kurtosis ± 1.96 times the standard error of kurtosis. e The D’Agostino-Pearson test statistic with χ2 2df. f The p-value at the 5% level of
significance.

E.5.3 Statistics Partitioned by Year and Days of The Week

TABLE E.51: EUR/JPY - Test for Departure from Normality

Year 1 Mean Std. Dev. Skewness Sak ZbSk Kurtosis Kc
u ZdKu DP e p-valuef Nbr. of Obs.

Monday 0.0006 0.0029 −0.4062 −1.2294 0.1858 0.2858 1.5932 0.4509 52
Tuesday −0.0002 0.0033 0.7862 2.3794 0.4880 0.7506 6.2250 0.0445 52
Wednesday 0.0000 0.0031 −0.0306 −0.0935 2.9519 4.5808 20.9923 0.0000 53
Thursday −0.0006 0.0042 −0.4788 −1.4492 0.7334 1.1281 3.3726 0.1852 52
Friday −0.0008 0.0042 −0.4633 −1.4021 1.1141 1.7138 4.9032 0.0862 52
a Skewness statistic is the third central moment divided by the three-halves power of the second central moment multiplied by the sample skewness

coefficient. b The skewness test statistic is the sample skewness divided by the standard error of skewness. The 5% confidence interval for skewness is sample
skewness ± 1.96 times the standard error of skewness. c The kurtosis coefficient is the fourth central moment divided by the square of the second central
moment multiplied by the sample kurtosis coefficient. d The kurtosis test statistic is the sample kurtosis divided by the standard error of kurtosis. The 5%
confidence interval for kurtosis is sample kurtosis ± 1.96 times the standard error of kurtosis. e The D’Agostino-Pearson test statistic with χ2 2df. f The
p-value at the 5% level of significance.
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TABLE E.52: EUR/JPY - Test for Departure from Normality

Year 2 Mean Std. Dev. Skewness Sak ZbSk Kurtosis Kc
u ZdKu DP e p-valuef Nbr. of Obs.

Monday 0.0010 0.0039 0.0948 0.2869 1.7801 2.7382 7.5800 0.0226 52
Tuesday 0.0000 0.0043 −0.3154 −0.9633 0.7197 1.1167 2.1751 0.3370 53
Wednesday −0.0001 0.0053 −0.9656 −2.9224 2.3677 3.6421 21.8053 0.0000 52
Thursday −0.0015 0.0053 −0.0192 −0.0581 0.6793 1.0449 1.0952 0.5783 52
Friday −0.0005 0.0046 0.4201 1.2715 0.3644 0.5605 1.9308 0.3808 52
a Skewness statistic is the third central moment divided by the three-halves power of the second central moment multiplied by the sample skewness

coefficient. b The skewness test statistic is the sample skewness divided by the standard error of skewness. The 5% confidence interval for skewness is sample
skewness ± 1.96 times the standard error of skewness. c The kurtosis coefficient is the fourth central moment divided by the square of the second central
moment multiplied by the sample kurtosis coefficient. d The kurtosis test statistic is the sample kurtosis divided by the standard error of kurtosis. The 5%
confidence interval for kurtosis is sample kurtosis ± 1.96 times the standard error of kurtosis. e The D’Agostino-Pearson test statistic with χ2 2df. f The
p-value at the 5% level of significance.

TABLE E.53: EUR/JPY - Test for Departure from Normality

Year 3 Mean Std. Dev. Skewness Sak ZbSk Kurtosis Kc
u ZdKu DP e p-valuef Nbr. of Obs.

Monday 0.0005 0.0052 0.0858 0.2620 4.7061 7.3029 53.4003 0.0000 53
Tuesday 0.0009 0.0055 0.9203 2.7853 2.3570 3.6257 20.9036 0.0000 52
Wednesday −0.0004 0.0047 −0.7103 −2.1497 0.7436 1.1438 5.9296 0.0516 52
Thursday 0.0006 0.0049 −0.1455 −0.4403 −0.1451 −0.2232 0.2437 0.8853 52
Friday 0.0003 0.0049 0.3190 0.9654 −0.6346 −0.9762 1.8849 0.3897 52
a Skewness statistic is the third central moment divided by the three-halves power of the second central moment multiplied by the sample skewness

coefficient. b The skewness test statistic is the sample skewness divided by the standard error of skewness. The 5% confidence interval for skewness is sample
skewness ± 1.96 times the standard error of skewness. c The kurtosis coefficient is the fourth central moment divided by the square of the second central
moment multiplied by the sample kurtosis coefficient. d The kurtosis test statistic is the sample kurtosis divided by the standard error of kurtosis. The 5%
confidence interval for kurtosis is sample kurtosis ± 1.96 times the standard error of kurtosis. e The D’Agostino-Pearson test statistic with χ2 2df. f The
p-value at the 5% level of significance.

TABLE E.54: EUR/JPY - Test for Departure from Normality

Year 4 Mean Std. Dev. Skewness Sak ZbSk Kurtosis Kc
u ZdKu DP e p-valuef Nbr. of Obs.

Monday −0.0002 0.0074 0.4155 1.2574 1.2331 1.8968 5.1789 0.0751 52
Tuesday 0.0001 0.0065 0.2118 0.6412 0.4463 0.6865 0.8824 0.6433 52
Wednesday 0.0009 0.0048 0.4486 1.3578 0.5064 0.7789 2.4502 0.2937 52
Thursday 0.0002 0.0084 −0.5979 −1.8096 2.7407 4.2159 21.0485 0.0000 52
Friday −0.0018 0.0103 −3.9740 −12.0274 22.1886 34.1315 1309.6147 0.0000 52
a Skewness statistic is the third central moment divided by the three-halves power of the second central moment multiplied by the sample skewness

coefficient. b The skewness test statistic is the sample skewness divided by the standard error of skewness. The 5% confidence interval for skewness is sample
skewness ± 1.96 times the standard error of skewness. c The kurtosis coefficient is the fourth central moment divided by the square of the second central
moment multiplied by the sample kurtosis coefficient. d The kurtosis test statistic is the sample kurtosis divided by the standard error of kurtosis. The 5%
confidence interval for kurtosis is sample kurtosis ± 1.96 times the standard error of kurtosis. e The D’Agostino-Pearson test statistic with χ2 2df. f The
p-value at the 5% level of significance.
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TABLE E.55: EUR/JPY - Test for Departure from Normality

Year 5 Mean Std. Dev. Skewness Sak ZbSk Kurtosis Kc
u ZdKu DP e p-valuef Nbr. of Obs.

Monday −0.0005 0.0044 −0.0401 −0.1213 −0.4050 −0.6230 0.4029 0.8175 52
Tuesday −0.0011 0.0056 0.1020 0.3086 0.4016 0.6177 0.4768 0.7879 52
Wednesday 0.0002 0.0063 0.0268 0.0810 0.3075 0.4730 0.2303 0.8912 52
Thursday 0.0005 0.0071 0.3637 1.1008 1.6769 2.5795 7.8653 0.0196 52
Friday −0.0005 0.0058 0.9756 2.9794 4.0474 6.2807 48.3246 0.0000 53
a Skewness statistic is the third central moment divided by the three-halves power of the second central moment multiplied by the sample skewness

coefficient. b The skewness test statistic is the sample skewness divided by the standard error of skewness. The 5% confidence interval for skewness is sample
skewness ± 1.96 times the standard error of skewness. c The kurtosis coefficient is the fourth central moment divided by the square of the second central
moment multiplied by the sample kurtosis coefficient. d The kurtosis test statistic is the sample kurtosis divided by the standard error of kurtosis. The 5%
confidence interval for kurtosis is sample kurtosis ± 1.96 times the standard error of kurtosis. e The D’Agostino-Pearson test statistic with χ2 2df. f The
p-value at the 5% level of significance.

TABLE E.56: EUR/JPY - Test for Departure from Normality

Year 6 Mean Std. Dev. Skewness Sak ZbSk Kurtosis Kc
u ZdKu DP e p-valuef Nbr. of Obs.

Monday 0.0005 0.0043 −0.4566 −1.3820 2.0090 3.0778 11.3829 0.0034 52
Tuesday 0.0001 0.0056 0.2589 0.7836 0.2826 0.4348 0.8031 0.6693 52
Wednesday −0.0004 0.0048 −0.3129 −0.9470 0.9673 1.4880 3.1109 0.2111 52
Thursday −0.0008 0.0065 −0.4478 −1.3676 3.2590 5.0573 27.4466 0.0000 53
Friday 0.0000 0.0058 −0.1992 −0.6028 5.0937 7.8354 61.7565 0.0000 52
a Skewness statistic is the third central moment divided by the three-halves power of the second central moment multiplied by the sample skewness

coefficient. b The skewness test statistic is the sample skewness divided by the standard error of skewness. The 5% confidence interval for skewness is sample
skewness ± 1.96 times the standard error of skewness. c The kurtosis coefficient is the fourth central moment divided by the square of the second central
moment multiplied by the sample kurtosis coefficient. d The kurtosis test statistic is the sample kurtosis divided by the standard error of kurtosis. The 5%
confidence interval for kurtosis is sample kurtosis ± 1.96 times the standard error of kurtosis. e The D’Agostino-Pearson test statistic with χ2 2df. f The
p-value at the 5% level of significance.

TABLE E.57: EUR/JPY - Test for Departure from Normality

Year 7 Mean Std. Dev. Skewness Sak ZbSk Kurtosis Kc
u ZdKu DP e p-valuef Nbr. of Obs.

Monday −0.0008 0.0079 −0.7188 −2.1754 2.7040 4.1594 22.0333 0.0000 52
Tuesday 0.0012 0.0063 −0.7777 −2.3537 4.5125 6.9413 53.7217 0.0000 52
Wednesday −0.0002 0.0052 0.1138 0.3476 −0.0135 −0.0209 0.1213 0.9412 53
Thursday 0.0018 0.0091 1.5674 4.7436 6.2932 9.6805 116.2143 0.0000 52
Friday 0.0002 0.0071 0.1293 0.3913 −0.0050 −0.0077 0.1532 0.9263 52
a Skewness statistic is the third central moment divided by the three-halves power of the second central moment multiplied by the sample skewness

coefficient. b The skewness test statistic is the sample skewness divided by the standard error of skewness. The 5% confidence interval for skewness is sample
skewness ± 1.96 times the standard error of skewness. c The kurtosis coefficient is the fourth central moment divided by the square of the second central
moment multiplied by the sample kurtosis coefficient. d The kurtosis test statistic is the sample kurtosis divided by the standard error of kurtosis. The 5%
confidence interval for kurtosis is sample kurtosis ± 1.96 times the standard error of kurtosis. e The D’Agostino-Pearson test statistic with χ2 2df. f The
p-value at the 5% level of significance.
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TABLE E.58: EUR/JPY - Test for Departure from Normality

Year 8 Mean Std. Dev. Skewness Sak ZbSk Kurtosis Kc
u ZdKu DP e p-valuef Nbr. of Obs.

Monday −0.0007 0.0069 0.3417 1.0342 0.7549 1.1612 2.4179 0.2985 52
Tuesday 0.0001 0.0063 −0.1456 −0.4448 0.8242 1.2790 1.8338 0.3998 53
Wednesday 0.0009 0.0070 −0.0522 −0.1579 −0.0794 −0.1222 0.0398 0.9803 52
Thursday 0.0011 0.0092 0.6996 2.1174 0.5347 0.8226 5.1601 0.0758 52
Friday 0.0019 0.0084 0.7158 2.1662 0.2988 0.4596 4.9038 0.0861 52
a Skewness statistic is the third central moment divided by the three-halves power of the second central moment multiplied by the sample skewness

coefficient. b The skewness test statistic is the sample skewness divided by the standard error of skewness. The 5% confidence interval for skewness is sample
skewness ± 1.96 times the standard error of skewness. c The kurtosis coefficient is the fourth central moment divided by the square of the second central
moment multiplied by the sample kurtosis coefficient. d The kurtosis test statistic is the sample kurtosis divided by the standard error of kurtosis. The 5%
confidence interval for kurtosis is sample kurtosis ± 1.96 times the standard error of kurtosis. e The D’Agostino-Pearson test statistic with χ2 2df. f The
p-value at the 5% level of significance.

TABLE E.59: EUR/JPY - Test for Departure from Normality

Year 9 Mean Std. Dev. Skewness Sak ZbSk Kurtosis Kc
u ZdKu DP e p-valuef Nbr. of Obs.

Monday −0.0013 0.0084 −0.4255 −1.2994 0.9044 1.4035 3.6582 0.1606 53
Tuesday 0.0014 0.0075 −0.4789 −1.4494 0.8863 1.3633 3.9593 0.1381 52
Wednesday −0.0015 0.0098 −0.6562 −1.9860 2.5690 3.9518 19.5609 0.0001 52
Thursday 0.0013 0.0080 −0.3568 −1.0800 0.9681 1.4891 3.3839 0.1842 52
Friday −0.0013 0.0083 1.3932 4.2166 4.4403 6.8302 64.4320 0.0000 52
a Skewness statistic is the third central moment divided by the three-halves power of the second central moment multiplied by the sample skewness

coefficient. b The skewness test statistic is the sample skewness divided by the standard error of skewness. The 5% confidence interval for skewness is sample
skewness ± 1.96 times the standard error of skewness. c The kurtosis coefficient is the fourth central moment divided by the square of the second central
moment multiplied by the sample kurtosis coefficient. d The kurtosis test statistic is the sample kurtosis divided by the standard error of kurtosis. The 5%
confidence interval for kurtosis is sample kurtosis ± 1.96 times the standard error of kurtosis. e The D’Agostino-Pearson test statistic with χ2 2df. f The
p-value at the 5% level of significance.

TABLE E.60: EUR/JPY - Test for Departure from Normality

Year 10 Mean Std. Dev. Skewness Sak ZbSk Kurtosis Kc
u ZdKu DP e p-valuef Nbr. of Obs.

Monday 0.0004 0.0084 −0.4671 −1.4136 0.8754 1.3465 3.8116 0.1487 52
Tuesday −0.0026 0.0099 −0.6324 −1.9140 −0.5610 −0.8629 4.4079 0.1104 52
Wednesday 0.0022 0.0101 −0.3829 −1.1589 2.4978 3.8422 16.1058 0.0003 52
Thursday −0.0002 0.0108 −1.3424 −4.0629 7.3897 11.3671 145.7176 0.0000 52
Friday 0.0004 0.0084 −0.4671 −1.4136 0.8754 1.3465 3.8116 0.1487 52
a Skewness statistic is the third central moment divided by the three-halves power of the second central moment multiplied by the sample skewness

coefficient. b The skewness test statistic is the sample skewness divided by the standard error of skewness. The 5% confidence interval for skewness is sample
skewness ± 1.96 times the standard error of skewness. c The kurtosis coefficient is the fourth central moment divided by the square of the second central
moment multiplied by the sample kurtosis coefficient. d The kurtosis test statistic is the sample kurtosis divided by the standard error of kurtosis. The 5%
confidence interval for kurtosis is sample kurtosis ± 1.96 times the standard error of kurtosis. e The D’Agostino-Pearson test statistic with χ2 2df. f The
p-value at the 5% level of significance.
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E.6 GBP/JPY

E.6.1 Statistics Partitioned by Year

TABLE E.61: GBP/JPY - Test for Departure from Normality

Year Mean Std. Dev. Skewness Sak ZbSk Kurtosis Kc
u ZdKu DP e p-valuef Nbr. of Obs.

Yr. 1 0.0000 0.0056 0.6705 4.4477 2.3619 7.8625 81.6003 0.0000 261
Yr. 2 −0.0001 0.0057 −0.0350 −0.2322 0.7362 2.4508 6.0602 0.0000 261
Yr. 3 0.0002 0.0059 −2.0222 −13.4135 1.1346 3.7770 194.1872 0.0000 261
Yr. 4 −0.0006 0.0124 −3.6298 −24.0314 35.4406 117.7570 14 444.2146 0.0000 260
Yr. 5 −0.0005 0.0061 −0.4056 −2.6902 1.7703 5.8932 41.9669 0.0000 261
Yr. 6 0.0003 0.0052 0.5071 3.3636 3.1143 10.3673 118.7951 0.0000 261
Yr. 7 0.0006 0.0073 0.3188 2.1146 4.5598 15.1792 234.8793 0.0000 261
Yr. 8 0.0005 0.0064 0.1410 0.9355 0.7190 2.3936 6.6046 0.0000 261
Yr. 9 −0.0003 0.0073 0.0531 0.3524 2.8811 9.5910 92.1123 0.0000 261
Yr. 10 −0.0002 0.0091 −0.8479 −5.6135 7.3134 24.2998 621.9936 0.0000 260
a Skewness statistic is the third central moment divided by the three-halves power of the second central moment multiplied by the sample skewness

coefficient. b The skewness test statistic is the sample skewness divided by the standard error of skewness. The 5% confidence interval for skewness is
sample skewness ± 1.96 times the standard error of skewness. c The kurtosis coefficient is the fourth central moment divided by the square of the second
central moment multiplied by the sample kurtosis coefficient. d The kurtosis test statistic is the sample kurtosis divided by the standard error of kurtosis.
The 5% confidence interval for kurtosis is sample kurtosis ± 1.96 times the standard error of kurtosis. e The D’Agostino-Pearson test statistic with χ2

2df. f The p-value at the 5% level of significance.

E.6.2 Statistics Partitioned by Days of The Week

TABLE E.62: GBP/JPY - Test for Departure from Normality

Day of Week Mean Std. Dev. Skewness Sak ZbSk Kurtosis Kc
u ZdKu DP e p-valuef Nbr. of Obs.

Monday −0.0003 0.0064 −0.3326 −3.1113 3.6743 17.2173 306.1168 0.0000 522
Tuesday 0.0000 0.0071 −0.0492 −0.4606 2.2247 10.4245 108.8816 0.0000 522
Wednesday 0.0007 0.0068 0.0271 0.1940 3.0070 14.0906 198.5829 0.0000 522
Thursday 0.0001 0.0077 −0.4829 −4.5129 8.7567 40.9938 1700.8602 0.0000 521
Friday −0.0005 0.0088 −5.0314 −47.0195 72.4487 339.1640 117 243.0587 0.0000 521
a Skewness statistic is the third central moment divided by the three-halves power of the second central moment multiplied by the sample skewness coefficient.
b The skewness test statistic is the sample skewness divided by the standard error of skewness. The 5% confidence interval for skewness is sample skewness ±
1.96 times the standard error of skewness. c The kurtosis coefficient is the fourth central moment divided by the square of the second central moment multiplied
by the sample kurtosis coefficient. d The kurtosis test statistic is the sample kurtosis divided by the standard error of kurtosis. The 5% confidence interval for
kurtosis is sample kurtosis ± 1.96 times the standard error of kurtosis. e The D’Agostino-Pearson test statistic with χ2 2df. f The p-value at the 5% level of
significance.
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E.6.3 Statistics Partitioned by Year and Days of The Week

TABLE E.63: GBP/JPY - Test for Departure from Normality

Year 1 Mean Std. Dev. Skewness Sak ZbSk Kurtosis Kc
u ZdKu DP e p-valuef Nbr. of Obs.

Monday −0.0006 0.0051 −0.0528 −0.1597 0.4004 0.6159 0.4049 0.8167 52
Tuesday 0.0003 0.0057 0.3358 1.0163 1.6330 2.5120 7.3429 0.0254 52
Wednesday 0.0010 0.0054 1.0187 3.1111 2.7787 4.3120 28.2721 0.0000 53
Thursday −0.0005 0.0060 1.1040 3.3412 5.0379 7.7495 71.2180 0.0000 52
Friday −0.0004 0.0059 0.8453 2.5582 2.0580 3.1657 16.5660 0.0003 52
a Skewness statistic is the third central moment divided by the three-halves power of the second central moment multiplied by the sample skewness

coefficient. b The skewness test statistic is the sample skewness divided by the standard error of skewness. The 5% confidence interval for skewness is sample
skewness ± 1.96 times the standard error of skewness. c The kurtosis coefficient is the fourth central moment divided by the square of the second central
moment multiplied by the sample kurtosis coefficient. d The kurtosis test statistic is the sample kurtosis divided by the standard error of kurtosis. The 5%
confidence interval for kurtosis is sample kurtosis ± 1.96 times the standard error of kurtosis. e The D’Agostino-Pearson test statistic with χ2 2df. f The
p-value at the 5% level of significance.

TABLE E.64: GBP/JPY - Test for Departure from Normality

Year 2 Mean Std. Dev. Skewness Sak ZbSk Kurtosis Kc
u ZdKu DP e p-valuef Nbr. of Obs.

Monday 0.0006 0.0044 0.2109 0.6382 0.4195 0.6452 0.8236 0.6625 52
Tuesday 0.0007 0.0052 −0.1591 −0.4860 −0.6302 −0.9779 1.1920 0.5509 53
Wednesday 0.0002 0.0064 −0.7136 −2.1598 1.9183 2.9507 13.3716 0.0012 52
Thursday −0.0017 0.0063 0.5868 1.7760 0.9128 1.4040 5.1255 0.0771 52
Friday −0.0004 0.0056 0.4656 1.4091 0.7418 1.1411 3.2877 0.1932 52
a Skewness statistic is the third central moment divided by the three-halves power of the second central moment multiplied by the sample skewness

coefficient. b The skewness test statistic is the sample skewness divided by the standard error of skewness. The 5% confidence interval for skewness is sample
skewness ± 1.96 times the standard error of skewness. c The kurtosis coefficient is the fourth central moment divided by the square of the second central
moment multiplied by the sample kurtosis coefficient. d The kurtosis test statistic is the sample kurtosis divided by the standard error of kurtosis. The 5%
confidence interval for kurtosis is sample kurtosis ± 1.96 times the standard error of kurtosis. e The D’Agostino-Pearson test statistic with χ2 2df. f The
p-value at the 5% level of significance.

TABLE E.65: GBP/JPY - Test for Departure from Normality

Year 3 Mean Std. Dev. Skewness Sak ZbSk Kurtosis Kc
u ZdKu DP e p-valuef Nbr. of Obs.

Monday 0.0002 0.0053 −1.2576 −3.8406 4.1477 6.4363 26.1759 0.0000 53
Tuesday 0.0008 0.0061 0.8566 2.5926 0.7212 1.1094 7.9524 0.0188 52
Wednesday 0.0002 0.0054 −0.5255 −1.5904 1.0078 1.5503 4.9327 0.0849 52
Thursday 0.0009 0.0063 −0.1609 −0.4871 0.2204 0.3390 0.3522 0.8385 52
Friday −0.0009 0.0064 0.5078 1.5370 1.5130 2.3274 7.7791 0.0205 52
a Skewness statistic is the third central moment divided by the three-halves power of the second central moment multiplied by the sample skewness

coefficient. b The skewness test statistic is the sample skewness divided by the standard error of skewness. The 5% confidence interval for skewness is sample
skewness ± 1.96 times the standard error of skewness. c The kurtosis coefficient is the fourth central moment divided by the square of the second central
moment multiplied by the sample kurtosis coefficient. d The kurtosis test statistic is the sample kurtosis divided by the standard error of kurtosis. The 5%
confidence interval for kurtosis is sample kurtosis ± 1.96 times the standard error of kurtosis. e The D’Agostino-Pearson test statistic with χ2 2df. f The
p-value at the 5% level of significance.
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TABLE E.66: GBP/JPY - Test for Departure from Normality

Year 4 Mean Std. Dev. Skewness Sak ZbSk Kurtosis Kc
u ZdKu DP e p-valuef Nbr. of Obs.

Monday −0.0003 0.0102 −0.5047 −1.5275 2.1361 3.2858 13.1300 0.0014 52
Tuesday 0.0003 0.0113 0.1947 0.5893 1.4877 2.2884 5.5841 0.0613 52
Wednesday 0.0014 0.0079 0.2624 0.7943 −0.2356 −0.3624 0.7622 0.6831 52
Thursday 0.0002 0.0101 0.1824 0.5521 1.2148 1.8687 3.7967 0.1498 52
Friday −0.0044 0.0193 −4.6643 −14.1165 28.5778 43.9595 2131.7152 0.0000 52
a Skewness statistic is the third central moment divided by the three-halves power of the second central moment multiplied by the sample skewness

coefficient. b The skewness test statistic is the sample skewness divided by the standard error of skewness. The 5% confidence interval for skewness is sample
skewness ± 1.96 times the standard error of skewness. c The kurtosis coefficient is the fourth central moment divided by the square of the second central
moment multiplied by the sample kurtosis coefficient. d The kurtosis test statistic is the sample kurtosis divided by the standard error of kurtosis. The 5%
confidence interval for kurtosis is sample kurtosis ± 1.96 times the standard error of kurtosis. e The D’Agostino-Pearson test statistic with χ2 2df. f The
p-value at the 5% level of significance.

TABLE E.67: GBP/JPY - Test for Departure from Normality

Year 5 Mean Std. Dev. Skewness Sak ZbSk Kurtosis Kc
u ZdKu DP e p-valuef Nbr. of Obs.

Monday −0.0002 0.0063 −1.1590 −3.5077 3.9658 6.1003 49.5176 0.0000 52
Tuesday −0.0014 0.0061 −0.2966 −0.8976 0.3385 0.5207 1.0768 0.5837 52
Wednesday 0.0003 0.0060 −0.8508 −2.5748 2.3221 3.5207 19.3883 0.0001 52
Thursday −0.0006 0.0051 −0.1371 −0.4150 −0.3900 −0.5999 0.5321 0.7664 52
Friday −0.0005 0.0070 0.1941 0.5927 1.9269 2.9901 9.2919 0.0096 53
a Skewness statistic is the third central moment divided by the three-halves power of the second central moment multiplied by the sample skewness

coefficient. b The skewness test statistic is the sample skewness divided by the standard error of skewness. The 5% confidence interval for skewness is sample
skewness ± 1.96 times the standard error of skewness. c The kurtosis coefficient is the fourth central moment divided by the square of the second central
moment multiplied by the sample kurtosis coefficient. d The kurtosis test statistic is the sample kurtosis divided by the standard error of kurtosis. The 5%
confidence interval for kurtosis is sample kurtosis ± 1.96 times the standard error of kurtosis. e The D’Agostino-Pearson test statistic with χ2 2df. f The
p-value at the 5% level of significance.

TABLE E.68: GBP/JPY - Test for Departure from Normality

Year 6 Mean Std. Dev. Skewness Sak ZbSk Kurtosis Kc
u ZdKu DP e p-valuef Nbr. of Obs.

Monday 0.0003 0.0048 −0.2302 −0.6968 1.9550 3.0072 9.5288 0.0085 52
Tuesday 0.0001 0.0052 −0.1460 −0.4420 1.9167 2.9483 8.8880 0.0117 52
Wednesday 0.0007 0.0057 −0.1155 −0.3495 −0.0217 −0.0334 0.1233 0.9402 52
Thursday 0.0001 0.0049 0.1962 0.5993 0.5978 0.9276 1.2197 0.5434 53
Friday 0.0002 0.0056 2.2903 6.9316 10.3068 15.8543 299.4057 0.0000 52
a Skewness statistic is the third central moment divided by the three-halves power of the second central moment multiplied by the sample skewness

coefficient. b The skewness test statistic is the sample skewness divided by the standard error of skewness. The 5% confidence interval for skewness is sample
skewness ± 1.96 times the standard error of skewness. c The kurtosis coefficient is the fourth central moment divided by the square of the second central
moment multiplied by the sample kurtosis coefficient. d The kurtosis test statistic is the sample kurtosis divided by the standard error of kurtosis. The 5%
confidence interval for kurtosis is sample kurtosis ± 1.96 times the standard error of kurtosis. e The D’Agostino-Pearson test statistic with χ2 2df. f The
p-value at the 5% level of significance.
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TABLE E.69: GBP/JPY - Test for Departure from Normality

Year 7 Mean Std. Dev. Skewness Sak ZbSk Kurtosis Kc
u ZdKu DP e p-valuef Nbr. of Obs.

Monday −0.0006 0.0075 −0.9616 −2.9102 2.2179 3.4116 20.1081 0.0000 52
Tuesday 0.0004 0.0066 −0.7272 −2.2008 3.1835 4.8971 28.8246 0.0000 52
Wednesday −0.0009 0.0061 0.6681 2.0405 2.7350 4.2442 22.1767 0.0000 53
Thursday 0.0028 0.0085 1.6577 5.0170 7.4732 11.4955 157.3169 0.0000 52
Friday −0.0003 0.0072 −0.0955 −0.2890 0.6524 1.0036 1.0907 0.5796 52
a Skewness statistic is the third central moment divided by the three-halves power of the second central moment multiplied by the sample skewness

coefficient. b The skewness test statistic is the sample skewness divided by the standard error of skewness. The 5% confidence interval for skewness is sample
skewness ± 1.96 times the standard error of skewness. c The kurtosis coefficient is the fourth central moment divided by the square of the second central
moment multiplied by the sample kurtosis coefficient. d The kurtosis test statistic is the sample kurtosis divided by the standard error of kurtosis. The 5%
confidence interval for kurtosis is sample kurtosis ± 1.96 times the standard error of kurtosis. e The D’Agostino-Pearson test statistic with χ2 2df. f The
p-value at the 5% level of significance.

TABLE E.70: GBP/JPY - Test for Departure from Normality

Year 8 Mean Std. Dev. Skewness Sak ZbSk Kurtosis Kc
u ZdKu DP e p-valuef Nbr. of Obs.

Monday −0.0007 0.0054 0.2911 0.8809 0.0676 0.1039 0.7868 0.6748 52
Tuesday 0.0000 0.0055 −0.8423 −2.5722 0.9576 1.4859 8.8243 0.0121 53
Wednesday 0.0009 0.0064 −0.1321 −0.3997 −0.4031 −0.6200 0.5442 0.7618 52
Thursday 0.0011 0.0079 −0.1229 −0.3721 0.4838 0.7442 0.6923 0.7074 52
Friday 0.0012 0.0065 1.0107 3.0589 1.4974 2.3033 14.6625 0.0007 52
a Skewness statistic is the third central moment divided by the three-halves power of the second central moment multiplied by the sample skewness

coefficient. b The skewness test statistic is the sample skewness divided by the standard error of skewness. The 5% confidence interval for skewness is sample
skewness ± 1.96 times the standard error of skewness. c The kurtosis coefficient is the fourth central moment divided by the square of the second central
moment multiplied by the sample kurtosis coefficient. d The kurtosis test statistic is the sample kurtosis divided by the standard error of kurtosis. The 5%
confidence interval for kurtosis is sample kurtosis ± 1.96 times the standard error of kurtosis. e The D’Agostino-Pearson test statistic with χ2 2df. f The
p-value at the 5% level of significance.

TABLE E.71: GBP/JPY - Test for Departure from Normality

Year 9 Mean Std. Dev. Skewness Sak ZbSk Kurtosis Kc
u ZdKu DP e p-valuef Nbr. of Obs.

Monday −0.0007 0.0073 0.8496 2.5948 3.6249 5.6251 38.3746 0.0000 53
Tuesday 0.0004 0.0077 −0.3988 −1.2070 0.7051 1.0846 2.6331 0.2681 52
Wednesday −0.0013 0.0088 −0.7552 −2.2855 3.2175 4.9493 29.7197 0.0000 52
Thursday 0.0001 0.0061 0.4015 1.2151 0.7921 1.2185 2.9612 0.2275 52
Friday 0.0002 0.0066 1.6122 4.8794 5.0069 7.7018 83.1267 0.0000 52
a Skewness statistic is the third central moment divided by the three-halves power of the second central moment multiplied by the sample skewness

coefficient. b The skewness test statistic is the sample skewness divided by the standard error of skewness. The 5% confidence interval for skewness is sample
skewness ± 1.96 times the standard error of skewness. c The kurtosis coefficient is the fourth central moment divided by the square of the second central
moment multiplied by the sample kurtosis coefficient. d The kurtosis test statistic is the sample kurtosis divided by the standard error of kurtosis. The 5%
confidence interval for kurtosis is sample kurtosis ± 1.96 times the standard error of kurtosis. e The D’Agostino-Pearson test statistic with χ2 2df. f The
p-value at the 5% level of significance.

187



APPENDIX E. TEST FOR DEPARTURE FROM NORMALITY F. Josephidou

TABLE E.72: GBP/JPY - Test for Departure from Normality

Year 10 Mean Std. Dev. Skewness Sak ZbSk Kurtosis Kc
u ZdKu DP e p-valuef Nbr. of Obs.

Monday −0.0001 0.0081 −0.2971 −0.8992 1.1515 1.7714 3.9462 0.1390 52
Tuesday −0.0017 0.0092 0.0780 0.2360 −0.3557 −0.5471 0.3550 0.8374 52
Wednesday 0.0023 0.0087 0.9265 2.8041 3.8660 5.9468 43.2277 0.0000 52
Thursday −0.0009 0.0120 −2.2896 −6.9295 10.3004 15.8445 299.0651 0.0000 52
Friday −0.0001 0.0081 −0.2971 −0.8992 1.1515 1.7714 3.9462 0.1390 52
a Skewness statistic is the third central moment divided by the three-halves power of the second central moment multiplied by the sample skewness

coefficient. b The skewness test statistic is the sample skewness divided by the standard error of skewness. The 5% confidence interval for skewness is sample
skewness ± 1.96 times the standard error of skewness. c The kurtosis coefficient is the fourth central moment divided by the square of the second central
moment multiplied by the sample kurtosis coefficient. d The kurtosis test statistic is the sample kurtosis divided by the standard error of kurtosis. The 5%
confidence interval for kurtosis is sample kurtosis ± 1.96 times the standard error of kurtosis. e The D’Agostino-Pearson test statistic with χ2 2df. f The
p-value at the 5% level of significance.
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Appendix F

Statistical Analysis of Skewness and
Kurtosis

F.1 Statical Analysis of Skewness and Kurtosis

If the absolute value of the skewness for the data is more than twice the standard error
of skewness, (SES), this indicates that the data is not likely symmetric, and therefore not
normal. Similarly if the absolute value of the kurtosis for the data is more than twice the
standard error of kurtosis, (SEK), this is also an indication that the data is unlikely to be
normally distributed.

The moment coefficient of the sample skewness (Sk) of a data set is given by

Sk =

√
n(n− 1)

n− 2
·m3/m

3
2
2 ,

where m3 =

∑
(x− x̄)3

n
and m2 =

∑
(x− x̄)2

n
,

(F.1)

where x̄ is the sample mean and n is the sample size, m3 is the third moment of the data set
and m2 is the variance. If the sample skewness is positive, the data set is positively skewed
to the right: the right tail of the distribution is longer than the left tail. Conversely for a
negative skewness the data is skewed to the left with that tail longer. If the skewness = 0,
the data is perfectly symmetrical. Although a skewness of exactly zero is unlikely to occur,
raising the question of how to interpret skewness? Bulmer (1979) suggests the following rule:

i. If −1 ≤ Sk ≥ +1, the distribution is highly skewed.

ii. If −1 ≥ Sk ≥ − 1
2 or between + 1

2 ≤ Sk ≤ +1, the distribution is moderately skewed.

iii. If skewness is between − 1
2 ≥ Sk ≤ + 1

2 , the distribution is approximately symmetric.
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The measure of skewness is an interpretation of the sample data. The sample skewness
does not necessarily apply to the whole population. The question arises, from the sample
skewness, can anything be concluded about the population from the sample? The data set is
just one sample of data drawn from a population. The sample could be skewed even though
the population is symmetric. But if the sample is skewed too much for random change to be
an explanation, then the conclusion drawn is that there is skewness in the population. To
address the question of too much for random chance to be the explanations? consider the
Cramer (2002) standard error of skewness (SES), where SES is given by

SES =

√
6n(n− 1)

(n− 2)(n+ 1)(n+ 3)
, (F.2)

where n is the sample size. Dividing the sample skewness (Sk) by the standard error of
skewness (SES) gives a measure of how many standard errors separate the sample skewness
from zero where the test statistic ZSk has a standard normal distribution ∼ N(0, 1) and given
by

ZSk =
Sk

SES
. (F.3)

The critical value of ZSk is approximately 1.96 for a two-tailed test of skewness 6= 0 at the 5%

level of significance.

i. If ZSk < −1.96, the population is very likely skewed negatively, although there is no
indication by how much.

ii. If −1.96 ≥ ZSk ≤ +1.96, you cannot reach any conclusions about the skewness of the
population: it might be symmetric, or it might be skewed in either direction.

iii. If ZSk > 1.96, the population is very likely skewed positively with no indication by how
much.

A distinction between the test statistic (ZSk) and the amount of skewness (Sk) must be made.
The amount of skewness is an indication of how highly skewed the sample is. The test statistic
tells us whether the whole population is probably skewed but not by how much. The larger
the test statistic the greater the probability of the population being skewed.

If a distribution is symmetric, the next question is about the central peak: is it high and
sharp or short and broad? The height and sharpness of the peak relative to the rest of
the data is measured by the kurtosis. Higher values of kurtosis indicate a higher, sharper
peak: more of the variability is due to a few extreme differences from the mean; lower values
indicate a lower, less distinct peak due to more modest differences from the mean.

Balanda and MacGillivray (1988) noted that increasing kurtosis is associated with the movement
of probability mass from the shoulders of a distribution into its centre and tails. The
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referenced standard is a normal distribution, which has a kurtosis of 3. Excess kurtosis
is simply Kurtosis−3 and classified as:

i. Mesokurtic: a normal distribution with kurtosis exactly 3.

ii. Platykurtic: kurtosis < 3. Compared to a normal distribution its central peak is lower
and broader, and its tails are shorter and thinner.

iii. Leptokurtic kurtosis > 3. Compared to a normal distribution its central peak is higher
and sharper and its tails are longer and fatter.

The smallest possible kurtosis is 1 (excess kurtosis minus 2), and the largest is ∞.

The Joanes and Gill (1998) moment coefficient of kurtosis (Ku) of a data set is given by

Ku =
(n− 1)

(n− 2)(n− 3)
· [(n+ 1)m4/m

2
2] ,

where m4 =

∑
(x− x̄)4

n
and m2 =

∑
(x− x̄)2

n
,

(F.4)

where x̄ is the sample mean and n is the sample size, m4 is the fourth moment of the data
set and m2 is the variance.

The sample kurtosis is an interpretation of the sample data. The sample kurtosis does not
necessarily apply to the whole population. To determine what the sample kurtosis tells us
about the population kurtosis the Cramer (2002) standard error of kurtosis (SEK) is applied
where the SEK is given by

SEK = 2 · (SES)

√
(n2 − 1)

(n− 3)(n+ 5)
, (F.5)

where n is the sample size. Dividing the sample kurtosis (Ku) by the standard error of kurtosis
(SEK) gives a measure of how many standard errors separate the sample kurtosis from zero
where the test statistic ZKu has a standard normal distribution ∼ N(0, 1) and given by

ZKu =
Ku

SEK
. (F.6)

The critical value of ZKu is approximately 1.96 for a two-tailed test of kurtosis 6= 0 at the 5%

level of significance.

i. If ZKu < −1.96, the population very likely has negative excess kurtosis: platykurtic,
although there is no indication by how much.
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ii. If −1.96 ≥ ZKu ≤ +1.96, you cannot reach any conclusions about the kurtosis of the
population: it might be mesokurtic, platykurtic or leptokurtic.

iii. If ZKu > +1.96, the population very likely has positive excess kurtosis: leptokurtic,
although there is no indication by how much.
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Appendix G

Black-Scholes Methodology and
Assumptions

G.1 Methodology and Assumptions

A European option is an option that can only be exercised on a specified future date. The
price paid for the asset is the exercise or strike price and the last day on which the option
may be exercised is the expiration or maturity date.

The inherent characteristics of a call option conform to the following qualities:

i. The higher the price of the stock, the greater the value of the option.

ii. When the stock price is much greater than the strike price the option is almost certain
to be exercised.

iii. The value of the option will be equal to the price of the stock minus the price of a pure
discount bond that matures on the same date as the option, with a face value equal to
the strike price.

iv. Conversely if the stock price is much less than the strike price the option will expire
without being exercised so its value will be zero.

v. The option value is constrained by the boundary conditions of the option.

vi. The maximum value of the option cannot be more than that of the stock.

vii. The minimum value cannot be less than the stock price minus the exercise price.

viii. If the expiration date is far into the future the value of the option will approximately be
equal to the price of the stock.

ix. If the expiration date is very near the value of the option will be the stock price minus
the exercise price or zero if the stock price is less than the strike price.
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x. The value of an option declines as its maturity date approaches, if the value of the stock
does not change.

xi. The option is more volatile than the stock. A percentage change in the stock price,
holding maturity constant will result in a larger percentage change in the option value.

xii. The relative volatility of the option is not constant: it depends on the stock price and
maturity.

G.1.1 The Black-Scholes Equation

The price of any derivative is a function of the stochastic variables underlying the derivative
and time. Thus the price of a stock option is a function of the underlying stock price and
time. The main principles used to formulate the Black-Scholes differential equation are:

i. No arbitrage transactions: This proposes that in a perfectly competitive, liquid market,
no opportunities exist to earn a risk-free profit.

ii. The creation of a riskless portfolio: At any time t, the proportion of each investment in
the portfolio must be set so that the net effect due to a small change in the price of the
underlying asset on the value of the portfolio is zero. A risk-free investment portfolio
must earn the risk-free rate of return.

If the conditions in the Black and Scholes (1973) model are satisfied and the percentage
return of the portfolio is equal to the risk-free interest rate then the value of a portfolio
at the end of a short period of time is known with certainty and is riskless only for that
instantaneously short period of time.

Methodology and Assumptions

The Black and Scholes (1973) no arbitrage principle depends on the assumptions that it
is possible to buy or sell any finite quantity of the underlying asset at any time: perfect
liquidity, and that trading is continuous in time. Further, the full use of the proceeds from
short selling securities is permitted.

Black and Scholes (1973) make the following set of assumptions in deriving the differential
equation:

i. The stock price follows a geometric Brownian motion with constant drift µ and constant
volatility σ. Thus the distribution of possible stock prices at the end of any finite interval
is log-normal. The variance rate of the return on the stock is constant.

ii. There are no penalties for short selling. A seller who does not own a security will simply
accept the price of the security from the buyer, and will agree to settle with the buyer
on some future date by paying him an amount equal to the price of the security on that
date.

194



APPENDIX G. BLACK-SCHOLES METHODOLOGY AND ASSUMPTIONS F. Josephidou

iii. There are no transaction costs or taxes in buying or selling the stock or option.

iv. It is possible to borrow any fraction of the price of a security, to buy it or to hold it, at
the risk-free interest rate. That is all securities are perfectly divisible.

v. The stock pays no dividends or other distributions.

vi. There are no riskless arbitrage opportunities.

vii. Security trading is continuous.

viii. The risk-free interest rate is known and is constant through time, for all maturities.

ix. The option is ”European,” that is, it can only be exercised at maturity.

Given that the market direction cannot be predicted, the stock price is represented by a
log-normal random walk in continuous-time with a variance rate proportional to the square
of the stock price. Thus the distribution of possible stock prices at the end of any finite
interval is a log-normal geometric Brownian motion with constant drift µ and volatility σ:
the expected return and the variance of stock prices are constant.

G.1.2 A Derivation

A European call option with strike price K and maturity T gives the buyer the right, but
not the obligation, to purchase the underlying stock at price K on the maturity or expiry
date T . Suppose the price of a contingent claim is f(S, t), which derives its value from the
performance of a tradeable equity security with asset price S at time t. At maturity the call
option is worth the difference between the stock price S and the strike price K if the stock
price is greater than the strike price S > K. If the strike price is greater than the stock price
K > S then the option is worthless. That is the price of the call option satisfies the condition

f(S, T ) = max(S −K, 0) . (G.1)

This is the fundamental boundary condition used to obtain a closed-form solution for the
option price as a function of the stock price and time. At maturity, the value of a call option
is the spot price minus the contract price, if that is positive, or zero: Black (1976).

The Price Process and Diffusion

A fundamental principle of the Black and Scholes (1973) formula is the creation of a riskless
portfolio consisting of a certain proportion of shares and options satisfying the boundary
conditions. In creating this portfolio Black and Scholes (1973) assumed that the stochastic
process for the stock price followed a geometric Brownian motion

dS

S
= µ dt+ σ dz , (G.2)
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where S is the stock price and dS/S follows a geometric Brownian motion with expected rate
of return µ and variance σ2.

Using this assumption and letting f(S, t) denote the price of the option derived from the stock
price S at time t; applying Itô’s lemma the diffusion becomes

df =

(
∂f

∂S
µS +

∂f

∂t
+

1

2

∂2f

∂S2
σ2S2

)
dt+

∂f

∂S
σS dz . (G.3)

The discrete version of Equations (G.2) and (G.3) are

∆S = µS∆t+ σS∆z (G.4)

and

∆f =

(
∂f

∂S
µS +

∂f

∂t
+

1

2

∂2f

∂S2
σ2S2

)
∆t+

∂f

∂S
σS∆z , (G.5)

where ∆S and ∆f are the changes in S and f over the small time interval ∆t and ∆z is a
Wiener process.

To eliminate the Wiener process, ∆z, the portfolio would consist of one short derivative
contract and long an amount of ∂f

∂S
shares of the underlying stock. Define Π as the value of

this portfolio, then

Π = −f +
∂f

∂S
S . (G.6)

The change ∆Π in the value of the portfolio over the interval ∆t is given by

∆Π = −∆f +
∂f

∂S
∆S . (G.7)

Under the assumption that ∂f
∂S

is constant over the time period ∆t and substituting in
Equations (G.4) and (G.5) and cancelling out the Wiener term yields

∆Π =

(
−∂f
∂t
− 1

2

∂2f

∂S2
σ2S2

)
∆t = rΠ ∆t , (G.8)

where Equation (G.8) does not contain a stochastic term and the portfolio is riskless during
the time interval ∆t, thus the return must be equal to the risk-free rate of interest, r.
Substituting for the value of the portfolio Π: Equation (G.6), gives

∆Π =

(
−∂f
∂t
− 1

2

∂2f

∂S2
σ2S2

)
∆t = r

(
−f +

∂f

∂S
S

)
∆t . (G.9)
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Rearranging yields the Black-Scholes differential equation

∂f

∂t
+ rS

∂f

∂S
+

1

2
σ2S2 ∂

2f

∂S2
= rf . (G.10)

Black and Scholes (1973) noted that there is only one formula f(S, t) that satisfies Equation
(G.10) subject to the boundary condition f(S, t) = max(S−K, 0) and this formula is the option
valuation formula. The Black and Scholes (1973) differential equation must be satisfied by
the price of any derivative dependent on a non-dividend paying stock: J. C. Hull (2012).
To obtain the closed-form solution of Equation (G.10), Malone (2002) makes the following
substitutions

f(S, t) = er(t−T )g [A(S, t), B(S, t)] ,

where A(S, t) =

(
2

σ2

)(
r − 1

2
σ2

)[
ln

(
S

K

)
−
(
r − 1

2
σ2

)
(t− T )

]

and B(S, t) = −
(

2

σ2

)(
r − 1

2
σ2

)2

(t− T ) ,

(G.11)

whereby Equation (G.10) simplifies to

∂g

∂b
=
∂2g

∂a2
, (G.12)

and the boundary condition becomes

g(a, 0) =

{
K
[
ea(

1
2
σ2)/(r− 1

2
σ2) − 1

]
if a ≥ 0

0, if a < 0 ,
(G.13)
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substituting the resulting function g(a, b) into Equation (G.12) and simplifying gives

fc(S, t) = SN(d1)−Ke−rTN(d2) ,

fp(S, t) = Ke−rTN(−d2)− SN(−d1) ,

where d1 =
ln(S/K) + (r + 1

2
σ2)T

σ
√
T

and d2 =
ln(S/K) + (r − 1

2
σ2)T

σ
√
T

,

(G.14)

where N(·) is the cumulative probability distribution function for a normally distributed
variable with a mean of zero and a standard deviation of 1. S is the stock price at time t = 0,
K is the strike price, r is the continuously compounded risk-free interest rate, σ is the stock
price volatility and T is the time to maturity of the option.
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Appendix H

Python Code

import x l s xw r i t e r
import math
import numpy as np
import pandas as pd
#=================================
# Set up rounding h a l f up func t i on
#=================================
def round ha l f up (n , dec imals =0):

mu l t i p l i e r = 10 ∗∗ dec imals
return math . f l o o r (n∗mu l t i p l i e r + 0 . 5 ) / mu l t i p l i e r

def round ha l f away f rom zero (n , dec imals =0):
rounded abs = round ha l f up (abs (n ) , dec imals )
return math . copys ign ( rounded abs , n )

#=========================================================
# Import data from gener i c workbook . x l s x f i l e i n t o pandas
#=========================================================
s e r i e s e x c e l d a t a c c y 1 c c y 2=pd . r e ad ex c e l ( ’ workbook . x l sx ’ , sheet name=’ ccy1ccy2 ’ )
#===================================================================================
# S l i c e the data , df name . co lumn header index . i l o c [ row index ] : I s o l a t e the 4 th d i g i t
#===================================================================================
#I t e r a t e s e t t i n g the va lue to each c e l l the f i n a l d i g i t i n t e g e r o f t h a t c e l l
EPObsz0 , EPObs1 , EPObs2 , EPObs3 , EPObs4 , EPObs5 , EPObs6 , EPObs7 , EPObs8 , EPObs9
=0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
for index in s e r i e s e x c e l d a t a c c y 1 c c y 2 . index :

s e r i e s e x c e l d a t a c c y 1 c c y 2 .Mid . i l o c [ index ]= int ( ( s e r i e s e x c e l d a t a c c y 1 c c y 2 .
Mid . i l o c [ index ]+0.000055)∗10000)− int ( ( s e r i e s e x c e l d a t a c c y 1 c c y 2 .Mid . i l o c [ index ]
+0.000055)∗1000)∗10
i f s e r i e s e x c e l d a t a c c y 1 c c y 2 .Mid . i l o c [ index]== 0 :

EPObszero+=1
e l i f s e r i e s e x c e l d a t a c c y 1 c c y 2 .Mid . i l o c [ index]== 1 :

EPObs1+=1
e l i f s e r i e s e x c e l d a t a c c y 1 c c y 2 .Mid . i l o c [ index]== 2 :

EPObs2+=1
e l i f s e r i e s e x c e l d a t a c c y 1 c c y 2 .Mid . i l o c [ index]== 3 :

EPObs3+=1
e l i f s e r i e s e x c e l d a t a c c y 1 c c y 2 .Mid . i l o c [ index]== 4 :

EPObs4+=1
e l i f s e r i e s e x c e l d a t a c c y 1 c c y 2 .Mid . i l o c [ index]== 5 :

EPObs5+=1
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e l i f s e r i e s e x c e l d a t a c c y 1 c c y 2 .Mid . i l o c [ index]== 6 :
EPObs6+=1

e l i f s e r i e s e x c e l d a t a c c y 1 c c y 2 .Mid . i l o c [ index]== 7 :
EPObs7+=1

e l i f s e r i e s e x c e l d a t a c c y 1 c c y 2 .Mid . i l o c [ index]== 8 :
EPObs8+=1

e l i f s e r i e s e x c e l d a t a c c y 1 c c y 2 .Mid . i l o c [ index]== 9 :
EPObs9+=1

EPTotalObs=EPObs0+EPObs1+EPObs2+EPObs3+EPObs4+EPObs5+EPObs6+EPObs7+EPObs8+EPObs9
#===================================================
# To count the number o f 0 to 9 d i g i t s in the sample
#===================================================
EPdig i t count=[EPObs0 , EPObs1 , EPObs2 , EPObs3 , EPObs4 , EPObs5 , EPObs6 , EPObs7 ,
EPObs8 , EPObs9 ]
EPdig i t pe rcent =[(EPObs0/EPTotalObs )∗100 , (EPObs1/EPTotalObs )∗100 ,
(EPObs2/EPTotalObs )∗100 ,
(EPObs3/EPTotalObs )∗100 , (EPObs4/EPTotalObs )∗100 , (EPObs5/EPTotalObs )∗100 ,
(EPObs6/EPTotalObs )∗100 , (EPObs7/EPTotalObs )∗100 , (EPObs8/EPTotalObs )∗100 ,
(EPObs9/EPTotalObs )∗100 ]
EPdig i t dec imal =[(EPObs0/EPTotalObs ) , (EPObs1/EPTotalObs ) , (EPObs2/EPTotalObs ) ,
(EPObs3/EPTotalObs ) , (EPObs4/EPTotalObs ) , (EPObs5/EPTotalObs ) , (EPObs6/EPTotalObs ) ,
(EPObs7/EPTotalObs ) , (EPObs8/EPTotalObs ) , (EPObs9/EPTotalObs ) ]
EP f i n a l d i g i t = [0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 ]
#====================
# Creat ing the Se r i e s
#====================
EPd i g i t c oun t s e r i e s=pd . S e r i e s ( EPdigit count , EP f i n a l d i g i t )
EPd i g i t p e r c e n t s e r i e s=pd . S e r i e s ( EPdig i t percent , EP f i n a l d i g i t )
EPd i g i t d e c ima l s e r i e s=pd . S e r i e s ( EPdig it dec imal , EP f i n a l d i g i t )
#================= Test va l u e s p r i n t out =====================
#===========================
# Chi Squared sum(( o−e )ˆ2/ e )
#===========================
EPExpected=EPTotalObs/10
EPChiSquared=((EPObs0−EPExpected)∗∗2+(EPObs1−EPExpected)∗∗2+(EPObs2−EPExpected)∗∗2+
(EPObs3−EPExpected)∗∗2+(EPObs4−EPExpected)∗∗2+(EPObs5−EPExpected)∗∗2+(
EPObs6−EPExpected)∗∗2+(EPObs7−EPExpected)∗∗2+(EPObs8−EPExpected)∗∗2+
(EPObs9−EPExpected )∗∗2)/EPExpected
print ( ’EP ChiSquared=’ ,round(EPChiSquared , 3 ) )
#========================================================
# Standard i sed Range (Hi%−Lo%)/ i f No c l u s t e r i n g i . e . 10%
#========================================================
#================
# Standi sed Range
#================
EPSR=(EPd i g i t p e r c e n t s e r i e s .max()−EPd i g i t p e r c e n t s e r i e s .min( ) )/10
print ( ’EP Standard ised Rage=’ , round(EPSR, 4 ) )
#======================
# At t rac t i on Hypothes i s
#======================
#====== Taking average pa i r s =====================
EPavg=[EPObs3 , EPObs7 ]
EPavg37 = np .mean(EPavg)
EPavg=[EPObs2 , EPObs8 ]
EPavg28 = np .mean(EPavg)
EPavg=[EPObs4 , EPObs6 ]
EPavg46 = np .mean(EPavg)
EPavg28lessavg46=EPavg28−EPavg46
EPavg=[EPObs1 , EPObs9 ]
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EPavg19 = np .mean(EPavg)
#========= Take d i f f e r e n c e s between groups ===========
EPavg37lessavg28=EPavg37−EPavg28
EPavg46lessavg19=EPavg46−EPavg19
#============================
EPGroup=[abs ( (EPObs3−EPObs7 ) ) , abs ( (EPObs2−EPObs8 ) ) , abs ( (EPObs4−EPObs6 ) ) ,
abs ( (EPObs1−EPObs9 ) ) ]
EPGroupavg = np .mean(EPGroup)
EPAttraction=min( EPavg37lessavg28 , EPavg28lessavg46 , EPavg46lessavg19 )/EPGroupavg
print ( ’EP Att rac t i on Test S t a t i s t i c =’ ,round( EPAttraction , 4 ) )
#======================
# Reso lu t ion Hypothes i s
#======================
#=============== Take average per group ======================
EPavg=[EPObs2 , EPObs3 , EPObs7 , EPObs8 ]
EPavg2378 = np .mean(EPavg)
EPavg=[EPObs1 , EPObs4 , EPObs6 , EPObs9 ]
EPavg1469 = np .mean(EPavg)
#==== Take the d i f f e r e n c e between the average groups ==========
EPavg2378lessavg1469=EPavg2378−EPavg1469
#=============Take Max and Min va l u e s per group ==================
EPmax2378=max(EPObs2 , EPObs3 , EPObs7 , EPObs8)
EPmin2378=min(EPObs2 , EPObs3 , EPObs7 , EPObs8)
EPmax1469=max(EPObs1 , EPObs4 , EPObs6 , EPObs9)
EPmin1469=min(EPObs1 , EPObs4 , EPObs6 , EPObs9)
#====== Take d i f f e r e n c e between Max and Min va l u e s ==========
EPmax2378lessmin2378=EPmax2378−EPmin2378
EPmax1469lessmin1469=EPmax1469−EPmin1469
#=====Take Max o f max−min pa i r s ==============
EPMaxdenom=max( EPmax2378lessmin2378 , EPmax1469lessmin1469 )
EPResolut iont ion=EPavg2378lessavg1469/EPMaxdenom
print ( ’EP Reso lut ion Test S t a t i s t i c =’ , round( EPResolutiontion , 4 ) )

#=======================================================================
# SAVE Resu l t s t o e x c e l x l s x u s ing ing . x l s xWr i t e r
#=========================================================================
# The most v e r s a t i l e and p r e f e r r e d method us ing x l s xWr i t e r NB import f i r s t
#=========================================================================
workbook = x l s xw r i t e r .Workbook( ’ Co l l u s i on Tests Resu l t s To Be Deleted . x l sx ’ )
worksheetTables = workbook . add worksheet ( ’ Tables ’ )
worksheetGraphs = workbook . add worksheet ( ’Graphs ’ )
bold = workbook . add format ({ ’ bold ’ : True })
bo ld and i t a l i c bo t t omborde r = workbook . add format ({ ’ bold ’ : True , ’ i t a l i c ’ : True , ’ bottom ’ : 1} )
# Widen the f i r s t column to make the t e x t c l e a r e r .
worksheetTables . set co lumn ( ’A:A ’ , 20)
# Write sample t e x t abd numbers .
worksheetTables . wr i t e ( ’A1 ’ , ’ ccy1ccy2 ’ , bo ld and i t a l i c bo t t omborde r )
worksheetTables . wr i t e ( ’A2 ’ , ’ Chi Squared ’ , bold )
worksheetTables . wr i t e ( ’A3 ’ , ’ Standard Range ’ , bold )
worksheetTables . wr i t e ( ’A4 ’ , ’ At t rac t i on ’ , bold )
worksheetTables . wr i t e ( ’A5 ’ , ’ Re so l t i on ’ , bold )
# Write some numbers , wi th row/column nota t i on .
worksheetTables . wr i t e (1 , 1 , EPChiSquared )
worksheetTables . wr i t e (2 , 1 , EPSR)
worksheetTables . wr i t e (3 , 1 , round( EPAttraction , 4 ) )
worksheetTables . wr i t e (4 , 1 , round( EPResolutiontion , 4 ) )
#===============
# Plot SR Graphs
percent=workbook . add format ({ ’ num format ’ : ’ 0.00% ’ })
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#worksheetgraph . wr i t e (1 , 0 , 3.1415926 , percent )
#============================================================================
# Add headings and data ccy1ccy2 graphs
#============================================================================
worksheetGraphs . set co lumn ( ’A:A ’ , 10)
headings = [ ’ F ina l D i g i t s ’ , ’EURGBP SR ’ ]
#data = [ [ 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 ] , [ ( PDObs0/PDTotalObs )∗100 , (PDObs1/PDTotalObs )∗100 ,
(PDObs2/PDTotalObs )∗100 , (PDObs3/PDTotalObs )∗100 , (PDObs4/PDTotalObs )∗100 ,
(PDObs5/PDTotalObs )∗100 , (PDObs6/PDTotalObs )∗100 , (PDObs7/PDTotalObs )∗100 ,
(PDObs8/PDTotalObs )∗100 , (PDObs9/PDTotalObs ) ∗ 1 0 0 ] ]
EPdata=[ EP f i na l d i g i t , EPdig it dec imal ,EPSR]
# Write to en t i r e row s t a r t i n g from c e l l A59
worksheetGraphs . wr i te row ( ’A1 ’ , headings )
# Write to en t i r e column s t a r t i n g from c e l l A2, repea t f o r B2 and C2 us ing index 0 ,1 , & 2
worksheetGraphs . write column ( ’A2 ’ , EPdata [ 0 ] )
worksheetGraphs . write column ( ’B2 ’ , EPdata [ 1 ] , percent )
#===================
# Create a Bar Chart
#===================
# I t e n t i f y the type o f graph char t1 w i l l be
#char t1 = workbook . add char t ({ ’ t ype ’ : ’ bar ’})
chart1 = workbook . add chart ({ ’ type ’ : ’ bar ’ })
chart1 . a dd s e r i e s ({

’name ’ : [ ’ Graphs ’ , 0 , 1 ] ,
’ c a t e g o r i e s ’ : [ ’ Graphs ’ , 1 , 0 , 10 , 0 ] ,
’ va lue s ’ : [ ’ Graphs ’ , 1 , 1 , 10 , 1 ] ,

}) #’name ’ : [ ’ Sheet1Name ’ , 0 , 1 ] or you can use ’name ’ : ’ StringNameHere ’
# Add a char t t i t l e and some ax i s l a b e l s .
chart1 . s e t t i t l e ({ ’name ’ : ’ ccy1ccy2 Fina l D ig i t D i s t r i bu t i on ’ })
chart1 . s e t x a x i s ({ ’name ’ : ’ Percbetage D i s t r i bu t i on ’ })
chart1 . s e t y a x i s ({ ’name ’ : ’ F ina l D i g i t s ’ })
#==========================================================
# Set an Exce l char t s t y l e from 1 to 48 as de f ined in Exce l
#==========================================================
chart1 . s e t s t y l e (11)
# Ins e r t the char t i n t o the worksheet ( wi th an o f f s e t ) .
worksheetGraphs . i n s e r t c h a r t ( ’D2 ’ , chart1 , { ’ x o f f s e t ’ : 25 , ’ y o f f s e t ’ : 10})
#======================
# Create a column Chart
#======================
# I t e n t i f y the type o f graph char t1 w i l l be
chart2 = workbook . add chart ({ ’ type ’ : ’ column ’ })
chart2 . a dd s e r i e s ({

’name ’ : [ ’ Graphs ’ , 0 , 1 ] ,
’ c a t e g o r i e s ’ : [ ’ Graphs ’ , 1 , 0 , 10 , 0 ] ,
’ va lue s ’ : [ ’ Graphs ’ , 1 , 1 , 10 , 1 ] ,

}) #’name ’ : [ ’ Sheet1Name ’ , 0 , 1 ] or you can use ’name ’ : ’ StringNameHere ’
# Add a char t t i t l e and some ax i s l a b e l s .
chart2 . s e t t i t l e ({ ’name ’ : ’ ccy1ccy2 Fina l D ig i t D i s t r i bu t i on ’ })
chart2 . s e t x a x i s ({ ’name ’ : ’ F ina l D ig i t ’ })
chart2 . s e t y a x i s ({ ’name ’ : ’ Percbetage D i s t r i bu t i on s ’ })
#==========================================================
# Set an Exce l char t s t y l e from 1 to 48 as de f ined in Exce l
#==========================================================
chart2 . s e t s t y l e (11)
# Ins e r t the char t i n t o the worksheet ( wi th an o f f s e t ) .
worksheetGraphs . i n s e r t c h a r t ( ’M2 ’ , chart2 , { ’ x o f f s e t ’ : 25 , ’ y o f f s e t ’ : 10})
#==============================================================================
workbook . c l o s e ( )
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print ( ’ Resu l t s and Graphs wr i ten to Co l lu s i on Tests Resu l t s To Be Deleted . x l sx ’ )

203



Glossary & Abbreviations

25-delta: Options delta value rises as options are increasingly In The Money (ITM) and reduces
as the options move progressively Out Of The Money (OTM). At The Money Options have
value of 50-delta, suggesting a 50% chance of either ending up In The Money or Out Of The
Money. A 25-delta is out of the money with only a 25% chance of ending in the money.

Arbitrage: Trading strategy based in the purchase of a commodity, including foreign exchange,
in one market at one price while simultaneously selling it in another market at the more
advantageous price, in order to obtain a risk-free profit on the price differential, i.e. a trading
strategy that takes advantage of two or more securities being mispriced relative to each other.

At-The-Money (ATM): An option whose exercise price is the same as the spot price of the
underlying currency.

Autoregressive Conditional Heteroscedasticity (ARCH): Time series model for volatilities.

Bank for International Settlements (BIS): Every three years, in September, the BIS issues
the Triennial Central Bank Survey, which reports metrics in the foreign exchange market
gathered during that year.

Base Currency: The base or unit currency is one unit of ccy1 in a ccy1ccy2 quoting convention.

Bernoulli: A univariate discrete distribution with only two discrete scenarios, one scenario with
value zero (failure) and the other with value 1 (success).

Bid-Ask Spread: The amount by which the ask price exceeds the bid price for an asset in the
market. The bid-ask spread is essentially the difference between the highest price that a buyer
is willing to pay for an asset and the lowest price that a seller is willing to accept to sell it.

Birth and Death Process: A special case of continuous-time Markov process where the state
transitions are of only two types: ”births”, which increase the state variable by one and
”deaths”, which decrease the state by one.

Bretton Woods: An agreement negotiated at a 1944 international conference and in effect from
1945 to 1971 that established the international monetary system.

Brownian Motion: The motion of a particle that is subject to a large number of small shocks.
See Wiener Process.

BSM: Black-Scholes-Merton Model for pricing European options in stocks, developed by Fisher
Black, Myron Scholes and Robert Merton.
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Call Option: An option to buy an asset at a certain price by a certain date.

Capital Asset Pricing Model (CAPM): Theoretical model that relates the return on an asset
to its risk, where risk is the contribution of the asset to the volatility of a portfolio. Risk and
return are presumed to be determined in competitive and efficient financial markets.

Cauchy Distribution: A defined distribution that does not have a mean, variance or higher
moments defined. The random variable does not possess a moment generating function.

Central Limit Theorem: states that the sampling distribution of the sample means approaches
a normal distribution as the sample size tends to infinity, no matter what the shape of the
population distribution.

Chartists: Individuals who uses charts or graphs of an assets historical prices or levels to forecast
its future trends. A chartist looks for well-known patterns such as head-and-shoulders or
support and resistance levels in securities so as to trade them more profitably.

Cobb-Douglas The functional form of the production function, used to represent the technological
relationship between the amounts of two or more inputs and the amount of output that can
be produced by those inputs.

Compound Poisson Process: A continuous-time stochastic process with jumps. The jumps
arrive randomly according to a Poisson process and the random size of the jumps is specified
by a probability distribution.

Continuous Time Process: Process for which the index variable takes values in a continuous
range.

CRSP: Center for Research in Security Prices. Provides access to historical data (back to 1926) on
US Stock and Indices. It contains day-end and month-end prices on all listed NYSE, Amex,
and NASDAQ common stocks along with basic market indices.

Cumulants: A sequence of numbers that describes the probability distribution in a useful, compact
way. The first cumulant is the mean, the second the variance, and the third cumulant is the
skewness or third central moment.

Decomposition Model: Decomposition procedures are used in time series to describe the trend
and seasonal factors in a time series by deconstructing a time series into several components,
each representing one of the underlying categories, namely the rates of change or predictability.

Diffusion Process: A solution to a stochastic differential equation with continuous sample paths.
A model where the value of the asset changes continuously, with no jumps.

Dominated Security: Security A is dominant over security B, if on some known date in the
future, the return on A will exceed the return on B for some possible states of the world, and
will be at least as large as on B, in all possible states of the world.

Drift Rate: The average increase per unit of time in a stochastic variable.

European Option: An option that can be exercised only on the day of which it expires.

Fractile: The cut off point for a certain fraction of a sample. If the distribution is known, then
the fractile is just the cut-off point where the distribution reaches a certain probability.
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Gamma Distribution: A two-parameter family of continuous probability distributions defined in
terms of its gamma function.

Gamma Function: An extension of the factorial function to real and complex numbers.

Gamma Variate: A class of random variables that produces a gamma function.

Gaussian Distribution: See Normal Distribution.

GBM: A geometric Brownian motion is a continuous-time stochastic process in which the logarithm
of the randomly varying quantity follows a Brownian motion with drift.

Generalised Autoregressive Conditional Heteroscedasticity (GARCH): A specification of
a dynamic model for volatility. A model for forecasting the volatility where the variance rate
follows a mean-reverting process.

Geometric Brownian Motion: Stochastic process assumed for asset prices where the logarithm
of the underlying variable follows a generalised Wiener process.

GK: Garman and Kohlhagen modified Black-Scholes-Merton model for pricing European foreign
exchange options. Developed by Mark Garman and Steven Kohlhagen.

Heteroscedasticity: The variance of a series is not constant throughout the sample.

Impulse Function: A function that is zero everywhere but at the origin where it is infinitely high.

In-The-Money (ITM): Circumstance in which an option is profitable, excluding the cost of the
premium, if exercised immediately.

Indicator Function: A function defined on a set X that indicates membership of an element in
a subset A of X having a value 1 for all elements of A and 0 for all elements of X not in A.

Interest Rate Parity: Theory that the differences in national interest rates for securities of
similar risk and maturity should be equal to but opposite in sign to the forward exchange
rate discount or premium for the foreign currency.

International Monetary Fund (IMF): An international organisation created in 1944 to promote
exchange rate stability and provide temporary financing for countries experiencing balance of
payments difficulties.

Itô’s Process: A stochastic process where the change inthe variable during each short period of
time of length ∆t has a nomral distibution. The mean and variance of the distibution are
proportional to ∆t and are not necessarily constant.

Kurtosis: A measure of the fatness of the tails of a probability distribution of a real-valued random
variable.

Leptokurtic: A series which has a higher peak at the mean and fatter-tails than a normal distribution
with the same mean and variance.

LIBOR: London interbank offered rate. The rate bid by banks on Eurocurrency deposits, i.e. the
rate at which a bank is willing to lend to other banks.
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Limit Order: Direction given to a broker to buy or sell a security or commodity at a specified
price or better.

Market Order: Direction given to a broker to buy or sell a security or commodity at the best
available current market price.

Markov Process: Stochastic process where the behaviour of the variable over a short period of
time depends solely on the value of the variable at the beginning of the period, not on the
past history.

Mixture Distribution: The probability distribution of a random variable that is derived from a
collection of other random variables.

Multinomial Prior: The number of distinct way to permute a multiset of n elements with ki
multiplicities of each of the distinct elements before some evidence is taken into account.

Noise Traders: A term used to describe investors who make decisions regarding buy and sell
trades without the support of advanced fundamental analysis.

Non-Linearities: A system in which the change of the output is not proportional to the change
of the input.

Order Flow: The net of buyer-initiated and seller-initiated orders; it is a measure of net buying
pressure.

Out-of-The-Money (OTM): An option that would not be profitable, excluding the cost of the
premium, if exercised immediately.

Outliers: Data points that do not fit in with the pattern of the other observations and that are a
long way from the fitted model.

Overshooting: Behaviour in financial markets in which a major market adjustment in price
changes ”overshoots” or surpasses the likely value it will settle at after a longer adjustment
period, akin to a market ”overreaction”.

Paretian Distribution: A power law functional relationship between two quantities where a
relative change in one quantity results in a proportional relative change in the other quantity,
known as the 80/20 rule.

Partial Differential Equations: (PDE) is an equation which imposes relations between the various
partial derivatives of a multivariable function.

Pip: An acronym for ”percentage in point” and the smallest price move that an exchange rate can
make based on market convention.

Platykurtic: Describes a statistical distribution with thinner tails than a normal distribution.
Because this distribution has thin tails, it has fewer outliers.

Poisson Distribution: A statistical distribution that shows how many times an event is likely
to occur within a specified period of time. Poisson is a discrete function with events being
measured as occurring or not occurring only.
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Poisson Process: Process describing a situation where events happen at random. The probability
of an event in time ∆t is λ∆t, where λ is the intensity of the random process.

Power-Law: In statistics, a power law is a functional relationship between two quantities, where a
relative change in one quantity results in a proportional relative change in the other quantity,
independent of the initial size of those quantities: one quantity varies as a power of another.

Price Attraction Hypothesis: Quoted Prices are subject to rounding human error.

Price Clustering: Price clustering refers to the fact that not all the available digits are used
equitably.

Price Discreteness: In the FX market exchange rates are truncated to a fixed number of digits,
this is referred to as price discreteness.

Price Resolution Hypothesis: Quoted prices are a compromise between increased accuracy and
ever longer prices.

Probability Density Function (p.d.f.): Relationship or mapping that describes how likely it is
that a random variable will take on a value within a given range. That is the value of any
point in the sample space can be interpreted as providing a relative likelihood that the value
of a random variable would equal that point.

Purchasing Power Parity (PPP): Theory that the price of internationally traded commodities
should be the same in every country, and hence the exchange rate between the two countries
should be the ratio of prices in the two countries.

Put Option: An option to sell an asset for a certain price by a certain date.

Quote Currency: The quote currency is number of units of ccy2 in a ccy1ccy2 quoting convention
required to purchase one unit of ccy1.

Random Process: A time varying function that assigns the real valued outcome of an experiment
to each instant of time.

Random Walk: Simple model where the current value of a series is simply the previous value
acted on by a white noise (error) term. Therefore the optimal forecast for a variable that
follows a random walk is the most recently observed value of that series.

Rational Expectations: A concept and modeling technique that is used widely in macroeconomics.
The theory posits that individuals base their decisions on three primary factors: their human
rationality, the information available to them, and their past experiences. The theory defines
this kind of expectations as being the best guess of the future.

Reporting Dealers: Dealers executing trades and managing risk on their accounts and on behalf
of their customers.

Risk Reversals: An option position that consists of being short (selling) an out-of-the-money put
and simultaneously long (buying) an out-of-the-money call, both with the same maturity.

ECN: Electronic Communication Network. A computerised system that automatically matches
buy and sell orders for securities in the market.
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ISO: Currency short codes from the International Organisation for Standardisation.

NASDAQ: National Association of Securities Dealers Automated Quotations, a global electronic
marketplace for buying and selling securities, as well as the benchmark index for U.S. technology
stocks. Nasdaq was created by the National Association of Securities Dealers (NASD) to
enable investors to trade securities on a computerized, speedy and transparent system.

NYSE: New York Stock Exchange.

Sample Space: The set of all possible outcomes.

Scaling Factor: Multiplication factor with the purpose of bringing the pip to the left of the decimal
point.

Skewed: Frequency distributions which are not symmetric.

Skewness: Standardised third moment of a distribution that shows whether it is symmetrical
around its mean value.

Stable Distribution: A distribution is stable if a linear combination of two independent random
variables has the same distribution as the individual variables upto location and scale parameters.
The stable distribution is an application of the Generalized Central Limit Theorem, which
states that the limit of normalized sums of independent identically distributed variables is
stable.

Stationary Process: A stochastic process whose unconditional joint probability distribution does
not change when shifted in time. Consequently, parameters such as mean and variance also
do not change over time.

Stationary: A time series whose statistical properties such as mean, variance and autocorrelation
are all constant over time.

Stochastic Process: Process describing the probabilistic behaviour of a stochastic variable.

Technical Analysts: Noise traders whose trading strategies are usually unrelated to company
fundamentals.

Tick: A measure of the minimum upward or downward movement in the price of a security.

Volatility Smile: The variation of implied volatility with strike price.

White Noise: A Process with a fixed mean and variance but no other structure (zero autocorrelation
for all lags). The error term in a regression model is usually assumed to be white noise.

Wiener Process: A stochastic process where the change in a variable during each short period of
time length ∆t has a normal distribution with a mean equal to zero and a variance equal to
∆t.
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Notations

Av Average or mean value.

B−1 Positive definite weighting matrix.

Bi(t) Buy price.

CPt Closing exchange rate.

Dp N-dimensional vector.

E Expected return.

E[R] Expected value of random variable R.

Ft Vector of fundamental variables.

Fx The first partial derivative.

Hi(φ′i) Highest percentage frequency at digit i.

Ku The moment coefficient of the sample kurtosis.

Lo(φ′i) Lowest percentage frequency at digit i.

MPt Mid point quote from the prevailing bid and ask quotes before a transaction.

Max Maximum value.

Min Minimum value.

N(t) Poisson process with parameter λt.

Nd Notional units of domestic currency.

Nf Notional units of foreign currency.

P (A|B) Conditional probability of A given B.

Q Percentage at each final digit i, if no clustering occurs.

R(t) Return over unit period of time.

Rt Dealer return.
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S Foreign exchange spot rate.

SEK Standard Error of Kurtosis.

SES Standard Error of Skewness.

SR Standardised Range.

Sd Bid-Ask Spread.

St Foreign exchange spot rate at time t.

Si(t) Foreign exchange spot rate i at time t.

Set+1 One period ahead expected foreign exchange spot rate given information available at time t.

Sk The moment coefficient of the sample skewness.

T A time step which controls the time scale of the model.

TPt Transaction price.

Uit Independent and identically normally distributed random variable.

Vt Unobservable fundamental value of stock in the absence of transactions costs at time t.

V ∗t Interim value of Vt due to a buy-sell imbalance.

V ar[R] Variance of random variable R.

Z(t) Denotes the natural logarithm of the price of a security at time t.

ZKu Sample kurtosis test statistic.

ZSk Sample skewness test statistic.

∆Pt Change in Price.

∆Si(t) Change in exchange rate.

∆t Change in the time interval t.

∆z Change in the variable z.

Γ(x) Gamma function for x.

α Characteristic exponent which measures the degree of peakedness and the fatness of the tails of
a stable distribution. Also known as the stability parameter.

α∗ Private information component.

B̄i(t) Sell price.

σ̄ Average standard deviation.

ν̄ ′ Average logarithm rate product.

β Temporary buy-sell imbalance component.
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β′ Vector of factor loadings.

χ2 Chi-squared distribution.

ε ∼ (0, 1) is a standardised normal random variable.

γ Gamma distribution shape parameter.

γ∗ Scale factor for a symmetrical Lévy stable distribution.

γ1 Skewness of compound events distribution.

α̂ An estimate of the characteristic exponent α.

ˆ̄α An average of the estimates α̂ of α.

λ Parameter of the intensity of the Poisson process, that is the average number of events per
interval.

λp The difference between a dealers buying and selling price.

λdm The proportion of observations associated with an information set.

λt The number of random events occurring in time t.

ln Natural logarithm of a number, its logarithm to the base of the mathematical constant e.

µ Mean of a random variable.

ν Gamma process variance rate.

ν ′ Logarithm rate product.

φ′i Percentage of final digit observations, at i, as a proportion of the total population.

π Geometrical value Pi.

π+π− Conditional probabilities.∏
Product - product of all values in range of series.

σ Standard deviation of a random variable.

σ2 Variance of a random variable.∑
Summation - sum of all values in range of series.

θp Pareto exponent.

θce Mean of a sequence of normally distributed, mutually independent random variables.

θdm Parameter vector.

υ Rate product.

εt Public information shock.

φx(u) Characteristic function for the probability distribution of X.
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a Positive constant.

a′i(t) The ith dealers price movement at time t.

c Gamma distribution scale parameter.

c′ Constant specifying the dealers response to changes in the exchange rate.

cp Distribution shift parameter.

dp Distribution scale factor.

et Error term.

f(x) Probability density function of random variable X.

fi Denotes independent fluctuations.

g Represents an interaction function.

hp Positive constant.

ip Relative industrial production.

ir Nominal interest differential.

m Ratio of domestic to foreign nominal money supply.

oft Order flow.

p Inflation differential.

q Dividend yield.

rt Stock return observation.

tb Relative cumulated trade balances.

xp Column vector of variables.

Ii Homogeneous information sets.

Yk Mutually independent random variable with mean θce and variance σ2
2.

l(A|B) Maximum likelihood of A given B.

ni(j) Number of observations at final digit i(j).

|| Absolute value.

213



Bibliography

Admati, A. R., & Pfleiderer, P. (1988). A theory of intraday patterns: Volume and price variability.
The Review of Financial Studies, 1 (1), 3–40.

Aiba, Y., & Hatano, N. (2006). A microscopic model of triangular arbitrage. Physica A: Statistical
Mechanics and its Applications, 371 (2), 572–584.

Aiba, Y., Hatano, N., Takayasu, H., Marumo, K., & Shimizu, T. (2002). Triangular arbitrage
as an interaction among foreign exchange rates. Physica A: Statistical Mechanics and its
Applications, 310 (3-4), 467–479.

Aiba, Y., Hatano, N., Takayasu, H., Marumo, K., & Shimizu, T. (2003). Triangular arbitrage and
negative auto-correlation of foreign exchange rates. Physica A: Statistical Mechanics and its
Applications, 324 (1-2), 253–257.

Alexander, C., & Nogueira, L. M. (2004). Hedging with stochastic local volatility.
Allen, H., & Taylor, M. P. (1990). Charts, noise and fundamentals in the london foreign exchange

market. The Economic Journal, 100 (400), 49–59.
Andersen, L., & Andreasen, J. (2000). Jump-diffusion processes: Volatility smile fitting and numerical

methods for option pricing. Review of derivatives research, 4 (3), 231–262.
Andrews, D. W. (2003). Tests for parameter instability and structural change with unknown change

point: A corrigendum. Econometrica, 395–397.
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Lévy, P. (1925). Calcul des probabilités.
Lucas, R. E. (1982). Interest rates and currency prices in a two-country world. Journal of Monetary

Economics, 10 (3), 335–359.
Lyons, R. K. (2001). The microstructure approach to exchange rates. Cambridge, MA: MIT press.
Lyons, R. K., & Moore, M. J. (2009). An information approach to international currencies. Journal

of International Economics, 79 (2), 211–221.
Madan, D. B., & Seneta, E. (1990). The variance gamma (vg) model for share market returns.

Journal of business, 511–524.
Malone, S. W. (2002). Alternative price processes for black-scholes: Empirical evidence and theory.

monograph dated April, 19.
Malz, A. M. (1996). Using options prices to estimate realignment probabilities in the european

monetary system: The case of the sterling-mark. Journal of International Money and Finance,
15, 717–748.

Malz, A. M. (1997). Estimating the probability distribution of the future exchange rate from option
prices. Journal of Derivatives, 5 (2), 18–36.

Mandelbrot, B. B. (1963). The variation of certain speculative prices. (4, pp. 394–419).
Mantegna, R. N., & Stanley, H. E. (1994). Stochastic process with ultraslow convergence to a
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