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Abstract
This study describes the structure and the re-
sults of the SIGTYP 2022 shared task on the
prediction of cognate reflexes from multilin-
gual wordlists. We asked participants to submit
systems that would predict words in individ-
ual languages with the help of cognate words
from related languages. Training and surprise
data were based on standardized multilingual
wordlists from several language families. Four
teams submitted a total of eight systems, in-
cluding both neural and non-neural systems,
as well as systems adjusted to the task and sys-
tems using more general settings. While all sys-
tems showed a rather promising performance,
reflecting the overwhelming regularity of sound
change, the best performance throughout was
achieved by a system based on convolutional
networks originally designed for image restora-
tion.

1 Introduction

In historical-comparative linguistics, scholars typi-
cally assemble words from related languages into
cognate sets. In contrast to the notion of cog-
nacy in language teaching and synchronic NLP
applications, cognate sets are understood as sets
of words that share a common origin regardless of
their meaning in historical-comparative linguistics
and that should not contain borrowed words. The
individual members of a cognate set are typically
called cognate reflexes or simply reflexes (Trask,
2000, 278). Cognate reflexes typically show regular
sound correspondences. This means that one can
define a mapping across the individual phoneme
systems of the individual languages. Thus, English
t typically corresponds to a German ts (compare
ten vs. zehn), and English d corresponds to Ger-
man t (compare dove vs. Taube). The mappings
often depend on certain contextual conditions and
may differ, depending on the position in which they
occur in a word. With the help of regular sound
correspondences, linguists can often predict fairly

well how the cognate counterpart of a word in one
language might sound in another language. How-
ever, prediction by linguists rarely takes only one
language pair into account. The more reflexes a
cognate set has in different languages, the easier it
is to predict reflexes in individual languages.

1.1 The Reflex Prediction Task

In its simplest form, the data we need for the task
of reflex prediction is a table in which each column
represents a different language and each row a dif-
ferent cognate set. We also assume that word forms
(or “reflexes” of a cognate set) are represented in
standardized phonetic transcriptions (such as the
International Phonetic Alphabet). Whenever a re-
flex in a specific language is missing, this reflex
can in theory be predicted with the help of the re-
maining reflexes. As an example, consider Table
2, showing reflexes of cognate sets in German, En-
glish, and Dutch. Since the reflex for the BELLY
cognate sets is missing in English, we could try
and predict it from known correspondences to Ger-
man and Dutch. The correct prediction would be
bouk. This form has been still preserved for some
time in English in the meaning of “torso”, going
back to Old English būk “belly” (Pfeifer, 1993),
although it has nowadays come out of use. When
provided with more data of this kind, one can build
a model that would be able to predict an English
form given a German and a Dutch form, as well
as a German form, given a Dutch and an English
form, and so on. Note that not all cognate sets in
real-life data will have reflexes for all words. Thus,
we know about English bouk from dialect records,
but without dialects or written sources from Mid-
dle English, we could only rely on prediction itself
in order to guess how the word would sound if it
would have been retained.

Since predictions for words that have been com-
pletely lost cannot be evaluated directly, we will
base our task on the prediction of artificially ex-
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Training Data
Dataset Source Version Family Languages Words Cognates
*abrahammonpa Abraham (2005) v3.0 Tshanglic 8 2063 403
*allenbai Allen (2007) v4.0 Bai 9 5773 969
*backstromnorthernpakistan Backstrom and Radloff (1992) v1.0 Sino-Tibetan 7 1426 248
*castrosui Castro and Pan (2015) v3.0.1 Sui 16 10139 1048
davletshinaztecan Davletshin (2012) v1.0 Uto-Aztecan 9 771 118
felekesemitic Feleke (2021) v1.0 Afro-Asiatic 19 2583 340
*hantganbangime Hantgan and List (2018) v1.0 Dogon 16 4405 971
hattorijaponic Hattori (1973) v1.0 Japonic 10 1802 278
listsamplesize List (2014) v1.0 Indo-European 4 1320 512
mannburmish Mann (1998) v1.2 Sino-Tibetan 7 2501 576

Surprise Data
Dataset Source Version Family Languages Words Cognates
bantubvd Greenhill and Gray (2015) v4.0 Atlantic-Congo 10 1218 388
beidazihui Běijı̄ng Dàxué (1962) v1.1 Sino-Tibetan 19 9750 518
birchallchapacuran Birchall et al. (2016) v1.1.0 Chapacuran 10 939 187
bodtkhobwa Bodt and List (2022) v3.1.0 Western Kho-Bwa 8 5214 915
*bremerberta Bremer (2016) v1.1 Berta 4 600 204
*deepadungpalaung Deepadung et al. (2015) v1.1 Palaung 16 1911 196
hillburmish Gong and Hill (2020) v0.2 Sino-Tibetan 9 2202 467
kesslersignificance Kessler (2001) v1.0 Indo-European 5 565 212
luangthongkumkaren Luangthongkum (2019) v0.2 Sino-Tibetan 8 2363 379
*wangbai Wang and Wang (2004) v1.0 Sino-Tibetan 10 4356 658

Table 1: Training and surprise data data used in our study. Datasets with identifiers preceded by an asterisk are
those in which we automatically searched for cognates. The remaining datasets all provided expert cognates, which
we used for the shared task. All datasets are archived with Zenodo, and the supplementary material provides a direct
reference to their Zenodo DOI and their GitHub repository URLs.

cluded word forms. Thus, we first take a dataset
with cognates in a few related languages, and then
artificially delete some of the words in the datasets,
using varying proportions. When training a model
to predict the missing word forms, we can then
compare the predicted words directly with the
words we have deleted automatically (List, 2019a).

A special case of the reflex prediction task, su-
pervised phonological reconstruction, focuses on
the prediction of words in ancestral languages, thus
mimicking the process of phonological reconstruc-
tion as one of the key aspects of the traditional
comparative method (Weiss, 2015). While we pre-
dict reflexes in any language in the generic reflex
prediction task, in automated phonological recon-
struction we predict one specific reflex of a cognate
set, viz. the form in the ancestral language. Apart
from the restriction in scope, however, the two tasks
do not differ much, and most methods which solve
the one task could also be used to solve the other.

Cognate Set German English Dutch
ASH a S E æS A s

BITE b ai s @ n b ai t b Ei t @

BELLY b au x - b œi k

Table 2: Exemplary cognate reflexes in German, En-
glish, and Dutch.

1.2 Background on Reflex Prediction

Quite a few studies on cognate reflex prediction
have been published during the past years. Bein-
born et al. (2013) uses character-based machine
translation approaches to predict cognate candi-
dates in a bilingual setting. Bodt and List (2022)
use a method for cognate reflex prediction orig-
inally tested by List (2019a) to predict cognate
reflexes in so far unobserved data, which was
later verified in fieldwork. The method by List
(2019a) uses automatically identified sound corre-
spondence patterns and phonetic alignment anal-
yses in order to predict for a given set of cognate
words how reflexes in languages missing in the cog-
nate set would sound. Meloni et al. (2021) make
use of an encoder-decoder model in order to recon-
struct Latin words from cognate sets in Romance
languages. Fourrier et al. (2021) model cognate
reflex prediction as a low-resource machine trans-
lation task, building several translation models for
Romance languages and using these to evaluate
word prediction accuracy. Dekker and Zuidema
(2021) use recurrent neural networks for cognate
reflex prediction and illustrate how word prediction
can be used to solve additional tasks in computa-
tional historical linguistics, such as phylogenetic
reconstruction or sound correspondence detection.
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List et al. (2022a) build on the framework for sound
correspondence pattern detection by List (2019a)
in order to propose a new framework for supervised
phonological reconstruction and cognate reflex pre-
diction which they expand by enriching phonetic
alignment analyses in such a way that contextual
information can be taken account.

1.3 Difficulties of Reflex Prediction
For traditional as well as modern approaches to
reflex prediction, there are a couple of challenges
that algorithmic solutions need to account for. The
first challenge consists in the prediction of sounds
which have no corresponding counterpart in the
source languages from which one predicts a word
in the target language. As an example, consider
Dutch tand [t A n d] “tooth” and English tooth [t U:

T]. It is easy to see that the [t] in Dutch corresponds
to a [t] in English, such as [a:] corresponds to [U:]
and [T] corresponds to [d]. However, the [n] in
Dutch has no counterpart in English, since English
[n] was lost when followed by a [T]. Since there
is no one-to-one sound match between the sound
in English and the sound in Dutch, the prediction
has to be based on the conditioning context, which
is notoriously difficult to handle in computational
approaches.

A further difficulty consists in the sparsity and
the patchiness of the data. Data are sparse with
respect to the number of cognate sets which we can
use to train computers or humans. Even for well-
established language groups, etymological dictio-
naries, which list more than 1000 reconstructed
items are quite rare. Apart from being sparse, data
are also patchy. Only a very small amount of the
proto-forms listed in etymological dictionaries is
reflected in the majority of the branches, and an
even smaller amount has survived without notable
irregularities in the sound changes or the morphol-
ogy of the word forms. Thus, even if one works
with datasets consisting of large numbers of related
words, there will always be situations in which
important reflexes are missing and at times only
one witness may be left that we can use for the
prediction of the cognate reflex in question.

2 Materials and Methods

2.1 Materials
Data for the shared task were taken from
the Lexibank repository, which offers wordlists
from 100 standardized datasets (List et al.

2022a, https://github.com/lexibank/
lexibank-analysed). In this repository, a
large collection of datasets with cognate sets pro-
vided by experts and phonetic transcriptions added
by the Lexibank team are provided. An even larger
number of datasets has only standardized phonetic
transcriptions but no cognate judgments. Since cog-
nate detection methods work well by now, we can
determine the cognates specifically for shallower
language families with quite some confidence; this
enabled us to assemble a larger amount of datasets
from different language families and either use
cognate sets provided by experts or inferring cog-
nates ourselves, using state-of-the-art methods for
automated cognate detection implemented in the
LingPy software library (List and Forkel, 2021).

For each the training and the surprise phase, 10
datasets were selected. Following the Lexibank
workflow for the curation of lexical wordlists, all
datasets were curated on GitHub and additionally
archived with Zenodo. Standardization of the data
included mapping the language names to Glot-
tolog (Hammarström et al., 2021), linking the con-
cept elicitation glosses to the Concepticon refer-
ence catalog (https://concepticon.clld.
org, List et al. 2022c), and adding standardized
phonetic transcriptions, following the B(road)IPA
system of the Cross-Linguistic Transcription Sys-
tems reference catalog (https://clts.clld.
org, Anderson et al. 2018), with the help of orthog-
raphy profiles (Moran and Cysouw, 2018). Since
only a smaller number of the datasets came along
with suitable cognate judgments needed for the
cognate reflex prediction task, cognates were auto-
matically inferred with standard settings, using a
variant of the LexStat algorithm for automatic cog-
nate detection (List, 2012a) that searches for partial
rather than full-word cognates (List et al., 2016).
Searching for partial cognates is justified, since
both the identification of regular sound correspon-
dences and the prediction of cognate reflexes can
only be carried out on material that is entirely cog-
nate (Schweikhard and List, 2020). Since full-word
cognates may often contain non-cognate material,
the prediction of full cognates would unnecessar-
ily exacerbate the reflex prediction task, adding a
random component that cannot be handled algo-
rithmically in a principled way. In all cases, we
excluded all singleton cognate sets (cognate sets
that occur only in one language), since these cannot
be used in our prediction experiments. Table 1 lists
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all datasets for the test and training phase along
with some basic statistics.

The datasets were used as the basis for the data
used for test and training during our shared task.
For this purpose, each dataset was split into five
training and test partitions in which the data re-
tained for testing was varied, starting from a pro-
portion of 10% retained for testing (proportion 0.1),
followed by 20% (proportion 0.2), 30% (proportion
0.3), 40% (proportion 0.4), and finally 50% (pro-
portion 0.5). The training data was not modified
further and used as primary input for the training
phase of all systems. The test data, however, was
artificially constructed from the test partition. We
first iterated over all cognate sets and then created
individual test sets from each cognate set iterating
over all words in a cognate set and deleting each
word in a row. For a cognate set of n words, this
would result in n test cases, in which each word
in each language would have to be predicted one
time.

2.2 Methods

2.2.1 Evaluation
Among the most commonly used evaluation mea-
sures for the word prediction task is the edit dis-
tance, which computes the number of operations
needed in order to convert the predicted word into
the attested word (Levenshtein, 1965). In its pri-
mary form, the edit distance is an integer. In order
to normalize the measure, correcting for a bias
resulting from the length of the compared strings,
scholars have proposed to divide the distance by the
length of the largest string (Holman et al., 2008), or
by the mean length of both strings being compared
(Nerbonne et al., 1999). A further possibility closer
to notions of distance in bioinformatics, which we
used in our shared task, is to divide the edit dis-
tance by the length of the alignment of both strings.
The normalized edit distance then corresponds to
the normalized Hamming distance between two
aligned sequences (Hamming, 1950), or – when
subtracting from 1 – to the notion of percentage
identity in evolutionary biology (Raghava and Bar-
ton, 2006). It is, however, important to note that ac-
tual differences in these normalization procedures
are usually small.

The edit distance, both normalized and unnor-
malized, has been employed in many word predic-
tion and phonological reconstruction experiments
as the basic evaluation measure for the prediction

accuracy (Meloni et al., 2021; Bouchard-Côté et al.,
2013). Its clearest shortcoming lies in the fact that
it only accounts for surface differences between
prediction and attested words (also called ‘pheno-
typic differences’ by Lass 1997), while structural
aspects (called ‘genotypic differences’ by Lass
1997) are ignored. Thus, if a method mistakenly
maps a certain sound x to a certain sound y in all
cases in which the x occurs, the edit distance will
treat each occurrence of the error independently
and may therefore provide drastically lowered re-
sults. It would, therefore, be good to account for
the relative regularity of the co-occurrence of x
and y. List (2019b) proposes to compute B-Cubed
F-scores (Amigó et al., 2009) from the aligned pre-
dicted and attested words. B-cubed F-scores only
check for the regularity of occurrences. This re-
sults in scores of 1 (indicating complete identity)
for sequence pairs like abbc compared with 1223.
Indeed, both sequences are structurally completely
identical since a simple mapping between the sym-
bols in both sequences can convert one string into
the other and vice versa. If a method has systematic
errors but otherwise does a good job in prediction,
B-Cubed F-Scores penalize results less strongly
than edit distance. As a final evaluation score, we
followed Fourrier et al. (2021) in providing BLEU
scores (Papineni et al., 2002). These scores are
usually used to investigate how well an automated
translation corresponds to the translated target test.
BLEU scores and B-Cubed F-Scores range from 0
to 1, with 1 indicating perfect agreement, the nor-
malized edit distance ranges between 1 (maximal
difference) and 0 (string identity).

2.2.2 Baselines
Our baselines were taken from the reflex prediction
framework by List et al. (2022b). This framework
consists of four major stages. In stage (1), cognate
sets are aligned with the help of standard meth-
ods for multiple phonetic alignment analyses (List,
2012b). In stage (2), alignments are trimmed by
merging all columns in the alignment in which the
attested languages all show a gap with their preced-
ing column. As a result, a word like Latin cenāre
[k e: n a: r E] would be rendered as [k e: n a: r.E],
when being aligned with Spanish cenar [T e n a R],
since the final [E] in Latin corresponds to a gap in
Spanish and could therefore not be predicted (see
List et al. 2022b for details on this procedure). In
stage (3), alignments are enriched by coding for
potentially conditioning context, which is added
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to the alignments in the form of additional rows.
In stage (4), the individual alignment columns are
converted to a matrix from which a classifier can
be trained. During prediction, cognate sets fed to
the algorithm are again being aligned and enriched,
but the trimming procedure is not needed, since it
only relates to the target language that one wants
to predict.

cognate sets aligned words

trained classifier

trimmed 
alignments

enriched
alignments

(1)  align  words (2)  trim   alignment

(3)  code  context (4)  train  classifier

Figure 1: Major steps of the reflex prediction framework
underlying the baseline.

Based on this general framework, we created two
baselines, one primary baseline that uses the corre-
spondence pattern recognition (CORPAR) method
by List (2019a) as a classifier, and one extended
baseline which predicts words with the help of a
support vector machine (SVM, see List et al. 2022b
for details on both systems). From previous stud-
ies on supervised phonological reconstruction we
know that the SVM variant of the framework out-
performs the CORPAR classifier clearly, although
differences are not extremely high (ibid.).

2.2.3 Implementation
We created specific software package that allows
to (1) automatically download the data in the par-
ticular versions of the individual CLDF datasets
which we used, (2) create the test and training data,
(3) apply the baseline methods to the data, and
(4) carry out the evaluation. The software package
is written in Python and can be accessed both using
the commandline and from within Python scripts.
It is curated on GitHub and archived with Zenodo
(see Section Supplementary Material for details).
Different versions were created in order to first re-
lease the training data (version 1.1), followed by
the release of the surprise data (version 1.2), and
finally followed by the release of the official results
of the evaluation (version 1.4, providing extended
evaluations in contrast to the version 1.3 planned
earlier).

Major dependencies of the software package are
LingPy (List and Forkel, 2021), used for the com-

putation of the edit distance and of phonetic align-
ments, Lingrex (List and Forkel, 2022), providing
access to the baseline method for cognate reflex
prediction, Scikit-learn (Pedregosa et al., 2011),
providing access to support vector machines, and
Matplotlib (Hunter, 2007), used for plotting.

3 Systems

Four teams submitted their systems for our shared
task. Since these systems are described in individ-
ual papers (Kirov et al., 2022; Jäger, 2022; Tresoldi,
2022; Celano, 2022), we will only briefly present
their main features here.
Team CrossLingference, represented by Ger-
hard Jäger (University Tübingen), provided a work-
flow Jäger 2022, implemented in the JULIA pro-
gramming language, that makes specifically use
of Bayesian phylogenetic inference. In contrast
to the remaining systems submitted to our shared
task, Jäger’s approach takes phylogenetic informa-
tion into account, extending an earlier workflow for
phonological reconstruction (Jäger, 2019).
Team Mockingbird, represented by Christo
Kirov, Richard Sproat, and Alexander Gutkin
(Google Research), provided two models for the
prediction of cognate reflexes. The first model, the
NEIGHBOR TRANSFORMER MODEL, was origi-
nally designed to find problems in the readings of
Japanese place names spelled in kanji (Jones et al.,
2022), and is based on the popular transformer ar-
chitecture (Vaswani et al., 2017), which was specif-
ically adjusted for the task. Since the training data
would be too small for the transformer model, the
authors augmented it with new instances generated
by randomly sampling subsets of a corresponding
cognate set. In addition to that, they also enriched
each set with synthetic instances using n-gram lan-
guage modelling. The second model, the IMAGE
INPAINTING MODEL, compares the cognate reflex
prediction task to the task of restoring corrupted
parts of a 2D image, in which dimensions corre-
spond to languages and cognate phonemic repre-
sentations. The restoration is achieved with the
help of convolutional neural networks (Liu et al.,
2018). For this model, no data augmentation steps
were undertaken. The authors provide four model
configurations of the neighbor model, with the first
three (N1-A, N1-B, and N1-C) differing in the
number of training steps and not being publicly
released, while the last one (N2), which was only
applied to the 0.1 proportion of the data, being pub-
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licly released. For the image inpainting model, one
configuration was provided (I1).
Team Leipzig, represented by Giuseppe G. A.
Celano (University Leipzig), provided a TRANS-
FORMER-based architecture with character and
position embeddings for the prediction of cognate
reflexes (Vaswani et al., 2017), in which language
information was one-hot encoded and the model
was trained on individual reflex pairs on each lan-
guage independently. In order to predict a word
from several reflexes in different languages, the
system first predicts individual target tensors of
probabilities for each attested reflex and then aver-
ages them to produce the prediction.
Team CEoT, represented by Tiago Tresoldi (Up-
psala University), provided a workflow that pre-
dicts cognate reflexes based on phonetic alignments
(Tresoldi, 2022), which is quite similar to the ex-
tended baselines of our shared task (List et al.,
2022b). In contrast to our baseline approaches,
their system EXTALIGN-RF skips the trimming
procedure (stage 2), varies the techniques for align-
ment enrichment by taking preceding and following
context into account (stage 3), and uses a random
forests classifier rather than a support vector ma-
chine.

While all teams tried hard to provide results for
all of their systems, some results could not be com-
puted in time, to be included in the shared task.
All teams were asked to share their data in such a
way that users can easily replicate the results and
also apply their methods to new data. Unfortu-
nately, there was no time for the team organizing
the shared task to individually check all systems
with respect to replicability and transparency. The
team checked, however, that all systems were prop-
erly archived with repositories offering long-term
storage of data, such as Zenodo, and we communi-
cated the importance of replication with all authors.

4 Results

Given that we measure system performance with
four evaluation measures (edit distance, normal-
ized edit distance, B-Cubed F-Scores, and BLEU
scores adjusted for word prediction), one might ex-
pect that systems perform differently with respect
to different evaluation measures. As can be seen
from the results in Table 3, however, the results are
rather clearly favoring the system I1 by the team
Mockingbird as the winner in almost all propor-
tions. The only case where the Mockingbird I1

Proportion in Test: 0.1
System ED NED B-Cubes BLEU
Baseline 1.2095 0.3119 0.7231 0.5716
Baseline-SVM 1.0189 0.2625 0.7626 0.6387
CEoT-Extalign-RF 1.0377 0.2763 0.7475 0.6243
CrossLingference-Julia 1.4804 0.3929 0.7251 0.4793
Leipzig-Transformer 1.3901 0.3687 0.6489 0.5114
Mockingbird-I1 0.9201 0.2431 0.7673 0.6633
Mockingbird-N1-A 1.0223 0.2568 0.7604 0.6479
Mockingbird-N1-B 1.0437 0.2625 0.7572 0.6398
Mockingbird-N1-C 1.1263 0.2867 0.7302 0.6115
Mockingbird-N2 1.2095 0.3135 0.7054 0.5744

Proportion in Test: 0.2
System ED NED B-Cubes BLEU
Baseline 1.3253 0.3361 0.6680 0.5412
Baseline-SVM 1.1723 0.2928 0.7067 0.5985
CEoT-Extalign-RF 1.2208 0.3175 0.6798 0.5709
CrossLingference-Julia 1.4954 0.3912 0.6882 0.4760
Leipzig-Transformer 1.5787 0.4046 0.5683 0.4646
Mockingbird-I1 1.0413 0.2648 0.7120 0.6326
Mockingbird-N1-A 1.1512 0.2825 0.7011 0.6138
Mockingbird-N1-B 1.1726 0.2901 0.6910 0.6054
Mockingbird-N1-C 1.2196 0.3051 0.6669 0.5841

Proportion in Test: 0.3
System ED NED B-Cubes BLEU
Baseline 1.4354 0.3556 0.6372 0.5195
Baseline-SVM 1.3713 0.3310 0.6565 0.5554
CEoT-Extalign-RF 1.4038 0.3525 0.6331 0.5286
CrossLingference-Julia 1.6116 0.4130 0.6508 0.4503
Leipzig-Transformer 1.7746 0.4467 0.5129 0.4207
Mockingbird-I1 1.1762 0.2899 0.6717 0.6059
Mockingbird-N1-A 1.2565 0.3119 0.6557 0.5779
Mockingbird-N1-B 1.2712 0.3103 0.6531 0.5792
Mockingbird-N1-C 1.3009 0.3215 0.6343 0.5636

Proportion in Test: 0.4
System ED NED B-Cubes BLEU
Baseline 1.6821 0.4011 0.6001 0.4717
Baseline-SVM 1.6159 0.3891 0.5990 0.4903
CEoT-Extalign-RF 1.5695 0.3960 0.5805 0.4773
CrossLingference-Julia 1.6059 0.4112 0.6411 0.4473
Leipzig-Transformer 1.9221 0.4800 0.4736 0.3893
Mockingbird-I1 1.2725 0.3162 0.6428 0.5724
Mockingbird-N1-A 1.4542 0.3521 0.6294 0.5293
Mockingbird-N1-B 1.3618 0.3349 0.6212 0.5466
Mockingbird-N1-C 1.4353 0.3547 0.5999 0.5228

Proportion in Test: 0.5
System ED NED B-Cubes BLEU
Baseline 1.8889 0.4445 0.5617 0.4265
Baseline-SVM 1.9330 0.4619 0.5371 0.4204
CEoT-Extalign-RF 1.8434 0.4576 0.5194 0.4128
CrossLingference-Julia 1.6794 0.4274 0.6193 0.4296
Leipzig-Transformer 2.1036 0.5257 0.4306 0.3438
Mockingbird-I1 1.4170 0.3518 0.6050 0.5337
Mockingbird-N1-A 1.5527 0.3800 0.5959 0.4934
Mockingbird-N1-B 1.5066 0.3734 0.5864 0.4989
Mockingbird-N1-C 1.5818 0.3950 0.5610 0.4749

Table 3: Results for the varying proportions and our four
evaluation measures, edit distance (ED), normalized
edit distance (NED), B-Cubed F-scores (B-Cubes) and
BLEU Scores (BLEU) on the surprise data. Cells shaded
in gray highlight the best score obtained for a given
proportion, bold font marks the second best score.

system does not show the best performance is the
test with 50% of the words being retained for test-
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System Rank NED B-Cubes BLEU Aggregated
Mockingbird-I1 1 1 1.2 1 1.1 ± 0.3
Mockingbird-N1-A 2 2.6 3 2.6 2.7 ± 0.4
Mockingbird-N1-B 3 2.4 4 2.4 2.9 ± 0.9
Baseline-SVM 4 5.2 4 5 4.7 ± 1.9
Mockingbird-N1-C 5 4.6 6.6 4.6 5.3 ± 1.3
CEoT-Extalign-RF 6 6 7 6.2 6.4 ± 1.1
CrossLingference-Julia 7 7.6 4 7.6 6.4 ± 2.5
Baseline 8 6.8 6.2 6.8 6.6 ± 0.8
Leipzig-Transformer 9 8.8 9 8.8 8.9 ± 0.4

Table 4: Overview of the average ranks of all nine sys-
tems for the different dataset proportions along with
aggregated ranks.

ing (proportion 0.5), where the JULIA system by
the CrossLingference team shows the best perfor-
mance with respect to the B-Cubed F-Scores. Since
B-Cubed F-Scores emphasize the systematicity of
the prediction quality rather than the accuracy in
individual cases, we can see that the JULIA system
copes better with systematic aspects of the word
prediction tasks in those cases, where the data for
the training of the system is limited. That the differ-
ent scoring systems show at least some degree of
independence can also be seen in Figure 2, which
shows results for the 10% partition, where the JU-
LIA system performs worst with respect to edit
distances and BLEU scores, while showing a better
performance than N2, TRANSFORMER, and the
baseline in B-Cubed F-Scores.

While the SVM baseline shows a surprisingly
good performance on the lowest proportion of data
excluded and retained for testing (proportion 0.1), it
looses ground with more data excluded for testing.
Here, the N1-A and N1-B systems, again from the
Mockingbird team, show the best performance.

Table 4 provides the aggregated ranks for the
normalized edit distance, the B-Cubed F-Scores,
and the BLEU scores for all systems obtained for
all splits of the data. The classical edit distance
was excluded in this overview, since it correlates
highly with the normalized edit distance and would
therefore artificially increase the overall ranks of
systems performing well in this regard. Further-
more, the N2 system by the Mockingbird team was
excluded in this analysis, since results could only
be provided for the smallest proportion of words re-
tained for testing (proportion 0.1). For each of the
five splits of the data and for each of the methods,
we ranked the systems according to their perfor-
mance and later calculated the average of all ranks
for each system on each of the three evaluation
methods. The aggregated ranks, in which all three
evaluation measures are ranked equally, allow us

to rank the overall performance of all systems. It
shows the overall superiority of the I1 system of
the Mockingbird team, followed by the teams’ N1-
A and N1-B methods. The SVM baseline and
the N1-C method by team Mockingbird follow on
places four and five. At the end of these ranks are
the EXTALIGN-RF system by team CeOT, the JU-
LIA system by Team CrossLingference, followed
by the simple baseline and the TRANSFORMER
approach of team Leipzig.

Overall, all systems do quite a good job at re-
covering unknown words from their cognate sets,
specifically in those cases, where only a small part
of the test data was retained for the evaluation pro-
cess. Judging from our practical experience and
independently published results on word predic-
tion experiments (List et al., 2022b; Bodt and List,
2022), B-Cubed F-Scores higher than 0.7 and aver-
age edit distances of about 1 provide a good starting
point for computer-assisted approaches and can al-
ready provide active help in various practical anno-
tation tasks in historical linguistics. Thus, scholars
working on the reconstruction of certain language
families could use predicted proto-forms and later
manually correct them, or field workers could use
automatically predicted words when trying to elicit
specific lexical items to search for cognate words
that might have shifted their meanings.

5 Discussion

It was one of the crucial insights made by historical
linguists in the early 19th century (Grimm, 1822;
Rask, 1818), that sound change proceeds in a sur-
prisingly regular, systematic manner, affecting all
sounds in the lexicon of a language that recur in
similar phonotactic positions. Without the system-
aticity and regularity of sound change, it would not
be possible to predict the pronunciation of words
in one language based on the pronunciation of cog-
nate words in related languages. While it has been
known for a long time to linguists that these kinds
of predictions can be made on the basis of historical
language comparison, the task of cognate reflex pre-
diction has only recently attracted the attention of
scholars working in the field of Natural Language
Processing and computational linguistics.

With our shared task on cognate reflex predic-
tion, we hoped to achieve two major goals. On
the one hand, we wanted to highlight the impor-
tance of classical scholarship for computational
applications in historical linguistics and linguistic
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Figure 2: Results for the surprise dataset of the 0.1 proportion, with 10% of data retained for testing.

typology, showing that quite a few problems which
are up to today exclusively solved manually might
profit from computational treatment. On the other
hand, we wanted to trigger the interest of scholars
with diverse backgrounds in this task, assembling
teams that address the problem with different strate-
gies that might inspire each other and help to lead
to largely improved methods in the future.

With the four teams that participated, we have
seen an interesting and diverse assembly of systems
that all deal with the cognate reflex prediction task.
While two teams made use of state-of-the-art ma-
chine learning methods based on neural networks
(team Mockingbird and team Leipzig), two teams
represented systems based on workflows using clas-
sical approaches in the emerging discipline of com-
putational historical linguistics (team CrossLingfer-
ence and team CEoT), using phonetic alignments,
and – in the case of team CrossLingference – even
Bayesian methods for phylogenetic reconstruction.
From the overall performance of the systems in
our shared task, we can see that some of the neural
approaches outperform the more targeted solutions.
Given differences in the performance with respect

to the evaluation methods, which highlight differ-
ent aspects of prediction accuracy, however, we
could also see that targeted methods like the Julia
method by CrossLingference or the extended Base-
line come very close to the best neural systems, and
even outperform them at times.
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Shirō Hattori. 1973. Japanese dialects. In Henry M.
Hoenigswald and Robert H. Langacre, editors, Di-
achronic, areal and typological linguistics, num-
ber 11 in Current Trends in Linguistics, pages 368–
400. Mouton, The Hague and Paris.

Eric W. Holman, Søren Wichmann, Cecil H. Brown,
Viveka Velupillai, André Müller, and Dik Bakker.
2008. Advances in automated language classification.
In Antti Arppe, Kaius Sinnemäki, and Urpu Nikann,
editors, Quantitative Investigations in Theoretical
Linguistics, pages 40–43. University of Helsinki,
Helsinki.

John D. Hunter. 2007. Matplotlib: A 2D graphics en-
vironment. Computing In Science & Engineering,
9(3):90–95.

60

http://arxiv.org/abs/http://www.sil.org/silesr/2007/silesr2007-012.pdf
https://doi.org/10.2478/yplm-2018-0002
https://doi.org/10.2478/yplm-2018-0002
https://doi.org/10.2478/yplm-2018-0002
https://doi.org/10.1086/687383
https://doi.org/10.1086/687383
https://doi.org/10.1075/dia.20009.bod
https://doi.org/10.15398/jlm.v8i2.268
https://doi.org/10.15398/jlm.v8i2.268
https://doi.org/10.1016/j.amper.2021.100074
https://doi.org/10.1016/j.amper.2021.100074
https://doi.org/10.18653/v1/2021.findings-acl.75
https://doi.org/10.18653/v1/2021.findings-acl.75
https://doi.org/10.5281/zenodo.4311182
https://doi.org/10.5281/zenodo.4311182
http://arxiv.org/abs/MnsKAAAAIAAJ
http://arxiv.org/abs/https://glottolog.org
http://arxiv.org/abs/https://glottolog.org
https://hal.archives-ouvertes.fr/hal-01867003/
https://hal.archives-ouvertes.fr/hal-01867003/
https://hal.archives-ouvertes.fr/hal-01867003/


Llion Jones, Richard Sproat, and Haruko Ishikawa.
2022. Helpful neighbors: Leveraging geographic
neighbors to aid in placename pronunciation. In
preparation.

Gerhard Jäger. 2019. Computational historical linguis-
tics. Theoretical Linguistics, 45(3-4):151–182.

Gerhard Jäger. 2022. Bayesian phylogenetic cognate
prediction. In The Fourth Workshop on Computa-
tional Typology and Multilingual NLP, Online. Asso-
ciation for Computational Linguistics.

Brett Kessler. 2001. The significance of word lists.
CSLI Publications, Stanford.

Christo Kirov, Richard Sproat, and Alexander Gutkin.
2022. Mockingbird at the SIGTYP 2022 Shared Task:
Two types of models for the prediction of cognate
reflexes. In The Fourth Workshop on Computational
Typology and Multilingual NLP, Online. Association
for Computational Linguistics.

Roger Lass. 1997. Historical linguistics and language
change. Cambridge University Press, Cambridge.

Vladimir. I. Levenshtein. 1965. Dvoičnye kody s is-
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