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Abstract
This study analyzes smallholder farmers’ decisions to adopt beans with higher
levels of dietary iron developed through a conventional breeding technique
called biofortification. We approach this study by applying spatial econometric
techniques to estimate neighborhood influence and to determine the factors driv-
ing the adoption of iron-biofortified beans (IBB). We employ a cross-sectional,
nationally representative survey of bean producing households from 2015 bean
growing season B in Rwanda, and present results for growers of both bush and
climbing varieties of beans. The results show geographic diffusion of iron bean
plantingmaterial occurs amongneighboring farmers that exhibit interdependent
decision-making patterns, as well as similar characteristics relative to the group.
Some policy implications can be drawn from the results. First, a differentiated
geographical targeting strategy for bush and climbing bean varieties as a function
of farmer and farm characteristics should increase iron bean adoption rates. Sec-
ond, strengthening partnerships with delivery agents and extensionists should
stimulate the adoption of IBB varieties. And finally, technology-promotion pro-
grams that consider progressive farmers and strengthen social interactions and
group activities among peer networks should increase the spread of information
and diffusion of IBB.
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1 INTRODUCTION

Common bean (Phaseolus vulgaris) is the most important
legume and one of the most vital sources of protein for
Rwandan families (Petry et al., 2015). Beans are staple
food crops in Rwanda and as such, the country ranks
number 1 out of 81 countries suitable for investing in
iron-biofortified beans (IBB) (Asare-Marfo et al., 2013).
At the same time, Rwandans have one of the highest per
capita bean consumption rates in the world, with rural
households consuming significant quantities of beans
on average of 6 days in a week (Asare-Marfo et al., 2016;
Berti et al., 2012; Food and Agriculture Organization of
the United Nations [FAO], 2020). In 2010, the National
Agricultural Research System of Rwanda, namely the
Rwanda Agriculture Board (RAB), in collaboration with
the International Center for Tropical Agriculture (CIAT)
and HarvestPlus, officially released the first IBB varieties
for planting by farmers in Rwanda. On the supply or prod-
uct side, these biofortified varieties not only had higher
micronutrient density, but also demonstrated better yield
performance and resilience to growth-reducing factors,
like pests and diseases, and growth-limiting factors, such
as droughts. However, at the time of their release, little
was known about the demand side, such as the key farm
and farmer level factors that would affect their adoption
and, in particular, the role of peer influence thereon.
Understanding the factors that drive IBB adoption among
bean farmers is critical to inform the design of policies
and programs that increase not only the production and
consumption of IBB varieties, but also of other improved
agricultural technologies in Rwanda.
IBB is a relatively new technology. Farmers may be

risk-averse when they lack information pertaining to
the likelihood of occurrence of the possible outcomes
(e.g., yield, costs, profitability) of the new technology
and such risk-averse attitude would exert a detrimental
impact on adoption. Farmers may be uncertain about the
economic returns of the new technology owing to insuf-
ficient knowledge about the types and costs of inputs
needed, the yield distribution, expectedmarket prices, and
the demand for the produce (Ghadim & Pannell, 1999;
Tessema et al., 2016). In this context, social learning
and social networks often complement and/or act as
substitutes in delivering information and facilitating the
technology diffusion process.
In his seminal work, Manski (1993) identified three

sources of social influence in the adoption of a technology:
(1) endogenous effects; (2) exogenous network effects; and
(3) correlated effects. The endogenous effect emphasizes
that the adoption behavior of individual farmers would
be influenced by their neighbors’ adoption outcomes, as
a result of peer learning about the profitability or the

appropriate use of the new technology, or of merely want-
ing to conform with observed peer behavior. The exoge-
nous effect highlights the contextual interactions, wherein
the propensity of an IBB grower to behave is correlated
with the exogenous characteristics of his/her neighbors.
The correlated effects emphasize that small holder farm-
ers in the same group tend to behave similarly because
of commonly observed and unobserved characteristics of
the group, for example, sharing a common institutional
or physical environment (Tessema et al., 2016). All these
three effects imply a spatial contextualization of the diffu-
sion of IBB varieties, meaning that the decision of a bean
growing household to adopt an iron bean variety is spa-
tially correlated. Farmers’ decisions to adopt IBB depend
not only on their own farmer and farm-level characteris-
tics, but also on the decisions of neighboring bean farmers
and their personal and farm level characteristics.
Communicating the benefits of growing and consuming

IBB varieties is also expected to influence IBB adoption,
as per the technology adoption literature (Abdulai et al.,
2008; Foster & Rosenzweig, 2010). Under this spatial con-
text, a bean growing household that is close in proximity
to a household who is an IBB grower should have a
higher probability of being an IBB adopter, which is the
endogenous effect. Another condition relates to the social
characteristics of a group as the main factor in spatial
clustering, which is the likelihood of an individual to
behave, on average, in agreement with their social group.
Whether or not the diffusion of IBB varieties is geographi-
cally driven, the spillover effectswill lead to a strong spatial
relationship, that is, farmers with similar IBB adaptation
behavior being in the same geographical area. Each one
of these sources of social influence would have different
policy implications.
Indeed, literature on the significance of social interac-

tions in the realm of capacity development is wide-ranging
and well-established (see e.g., Durlauf & Ioannides, 2010).
Interest in the role of social learning in promoting agricul-
tural technology diffusion has grown in recent years. Here
we highlight recent salient empirical work on this topic.
Conley and Udry (2010) used individual-level data of
pineapple farmers in Ghana to provide an empirical anal-
ysis to measure the importance of social learning. Their
results support the notion that farmers are learning from
neighboring farmers’ experience and that novice farmers
are likely to adopt new technologies faster than experi-
enced farmers. Foster and Rosenzweig (2010) provided
a review of studies focused on the adoption of new tech-
nologies in low-income countries. They summarize that
the key factors affecting the adoption of a new technology
are financial conditions, social learning, technological
externalities, scale economies, schooling, credit con-
straints, and incomplete insurance. Krishnan and Patnam
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(2014) used data from Ethiopia to examine the effect
of learning from extension agents and learning from
neighbors. They found that the adoption of fertilizer and
especially of better seeds is slow. Learning from adopting
neighbors is mainly responsible for the spread of these
technologies. Ward and Pede (2015) used a nationally
representative data from Bangladesh. They found that a
network of hybrid rice adopters has a higher influence
than a distance network of hybrid rice adopters. They
show that network effects play a more important role in
hybrid cultivation than agricultural extension services. In
summary, social learning theories and models conclude
that social learning plays a key role in the spread of agri-
cultural technology, and farmers’ decisions to adopt a new
technology are influenced by the decision and knowledge
of neighboring farmers. Common spatial econometric
methods applied to technology adoption include the
spatial error model and the spatial lag model (Holloway
et al., 2002; Ward & Pede, 2015). In this article, we expand
this literature bymodeling the endogenous and exogenous
network effects using the spatial Durbin model (SDM)
(Anselin, 1988; J. LeSage & Kelley Pace, 2009), which
allows for an enhanced understanding of IBB adoption as
it relates to neighboring characteristics. In addition, we
employed multilevel modeling to control for correlated
effects in which takes into consideration that the outcomes
of smallholder farming households in the same village are
impacted by the same observed and unobserved correlated
effects.
What sets this article apart from the large literature

on agricultural technology adoption in low and middle-
income is that it combines methods and theories from
economics and geography to understand the importance
of interdependence and spatial spillovers on the diffusion
of agricultural technology, particularly of IBB. This arti-
cle further contributes to this topic by offering a social
interaction model that incorporates endogenous social
interaction, individual exogenous characteristics, as well
as contextual effects. In addition to quantifying the extent
of the endogenous and contextual effects, this article pro-
vides a detailed and comprehensive discussion of the
relative magnitude of direct and indirect effects. These
effects are not considered in the existing literature per-
taining to the role of social interaction on the adoption of
agricultural technology. This last part helps to answer the
question of the significance of spatial spillovers in influ-
encing neighboring farmers in adopting IBB. Furthermore,
we use the spatial multilevel estimator to characterize
the relative influence of correlated effects on the adop-
tion of IBB. In sum, the presence of significant spillovers
may help to estimate the benefits of a" program or pol-
icy and the multilevel analysis represents an alternative

way of capturing unobserved spatially correlated effects.
The correlated effect is useful to characterize, map, and
understand how villages might affect one another when
the multilevel structure is incorporated into a spatial
model.
Shaped by locality and constrained by social geographic

distance, we model social interactions by setting geo-
graphic neighbors’ relationships. By social interactions,
we refer to interdependence among smallholder farmers
in which preferences, tacit knowledge, expectations, and
constraints faced by one farmer are directly influenced by
the characteristics and choices of others. In this article,
we are interested in the importance of tacit knowledge
as it directly pertains to farming experience and know-
how of the use of IBB and farm management practices
in smallholder farming households. In spatial regression
analysis, measures of spatial interaction include the spatial
autoregressive (SAR) parameter through different spatial
weight structures. The SAR parameter represents a way to
model structured dependence between observations that
arise from peer effects (Case, 1992; J. LeSage & Kelley
Pace, 2009). The SAR parameter in technology adoption
studies contains important policy information. Mapping
interactions of farmers’ IBB adaptation behavior can pro-
vide guidance to new technology delivery programs on
how specific initial investments in technology promotion
can generate further geographic diffusion (Conley & Udry,
2010; Holloway et al., 2002).
This article analyzes farmers’ adoption of IBB varieties

by specifically examining the influence of demand-side
factors and the role of peers. We draw on several theories
from studies on the adoption of agricultural technology,
social behavior, and spatial econometric methods to build
ourmodels.We test for the presence of a spatial association
between economic agents (farmers), estimate prevalence
rates of IBB adoption by district, and examine any poten-
tial interactions with contextual factors. We implement
spatial probit (SP) models for discrete-choice data using
Bayesian modeling. The use of Bayesian modeling to esti-
mate spatial processes allows estimating more realistic
models (Anselin, 1988; J. LeSage & Kelley Pace, 2009).
These newmethods produce useful measures of direct and
spatial spillover impacts from changes in the explanatory
variables (Lacombe & LeSage, 2018; J. LeSage & Kelley
Pace, 2009).
The remainder of this article is organized into three

sections. Section 2 sets out the conceptual framework
for the study and gives the general descriptive statistics
for the variables used in our analysis. Section 3 analyzes
the determinants of IBB adoption and spillover effects
in Rwanda. Section 4 provides conclusions and policy
recommendations.
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2 CONCEPTUAL FRAMWORK, DATA,
SURVEY STATISTICS, AND COVARIATES

2.1 Theoretical consideration

Our theoretical framework applied to the adoption of agri-
cultural technology draws concepts on social interaction
from Conley and Udry (2010) and Ward and Pede (2015)
and concepts on optimal choice and utility maximization
from Abdulai et al. (2008). We make two broad assump-
tions (1) a smallholder farming household’s decision to
grow IBB varieties is based on utility maximization theory
and (2) new IBB varieties produce higher yields condi-
tioned to the use of modern inputs and management
practices. There is also an element of uncertainty because
farming households are less familiarwith the IBB varieties.
The structure of the production function of a smallholder
farming household for the period t and future period t +1,

𝑦𝑖, 𝑡+1 = 𝑓 (𝑀𝑖𝑡, 𝑘𝑖𝑡, 𝜔) + 𝜀𝑖,𝑡+1. (1)

where 𝑦𝑖, 𝑡+1 is farming household’s future output, 𝑀𝑖𝑡 is
the quantity of inputs used in the current period, 𝑘𝑖𝑡 is
the farming household’s level of information used in the
current period, - environmental conditions, and εi is an
i.i.d disturbance for household i with zero mean and 𝜎2.
εi is assumed to follow a normal distribution. The profit
function is,

∏
𝑖, 𝑡+1

= 𝑃𝑡+1 𝑓 (𝑀𝑖𝑡, 𝑘𝑖𝑡, 𝜔) − 𝐶𝑡

= max [𝑃𝑡+1𝑓 (𝑀𝑖𝑡, 𝑘𝑖𝑡, 𝜔) − 𝜓𝑀𝑖𝑡 − 𝜁𝑘𝑖𝑡] . (2)

Πi, t+1 indicates that the value given by the function is
the maximum profit that can be obtained at a given local
market price.C is the cost of production. Only the variables
Mit and 𝑘𝑖𝑡 are under the smallholder farming household’s
control. The farming household chooses levels of these
inputs, M and k, in order to maximize profits. The small-
holder farming household maximum profits depends on
these three exogenous prices,P,𝜓, 𝜁 togetherwith the form
of the production function.
The other two sets of assumptions include (1) farming

households’ profit expectations depend not only on their
own experiences, preferences, but also on their social inter-
action with other farmers’ experiences, expectations, and
constraints, and (2) social interaction occurs in local places
and its strength depends on the relative social geographic
distance between IBB adopters and their neighbors. There-
fore, assuming that the farmer maximizes the expected

profit Π, as shown in the following equation,

𝐸𝑈 (
∏
𝑖

) ≡ 𝐸𝑈[
∏
𝑖

|𝑓 (
𝑚𝑖, 𝑘𝑖, 𝜔, 𝑑𝑖𝑗

)
, 𝑓

(
𝑚𝑗, 𝑘𝑗, 𝜔

)
]. (3)

E denotes the expectation operator, U is the von-Neuman-
Morgenstern utility function; 𝑚𝑖 and 𝑘𝑖 denote bean
farming household inputs decision; mj and kj are the
inputs decision of neighboring farming households,
which in turn are a function of the social geographic
distance d; and ω denotes environmental conditions.
To control for endogenous group effects, as well as a
contextual effect, we used a spatial weight matrix W that
contains elements Wij. This matrix captures the network
structure of bean farming households in our survey sam-
ple. The weight matrix specification is based on inverse
distance between a household and each of its k (13) nearest
neighbors. The information stored in the weight matrix
is row-standardized so that row sum of the weight matrix
equals to one. Section 2.5 provides more details on the
specification of the spatial weight matrixW. In this article,
we focus on the case that W is row-normalized. Row-
normalization is common in empirical studies of social
interaction so thatWY can be interpreted as the weighted
average outcome of smallholder farming households
across all neighbors of a given household (Lee et al., 2010).
If the expected marginal benefit is greater than the

marginal benefit of growing traditional bean varieties,
small farmers will plant IBB varieties. However, the
expected marginal benefit is unobservable. In this spe-
cial case, the discrete choice model becomes useful. They
are commonly used to investigate a wide range of areas
in agricultural economics, including technology adoption
and land-use decision-making. We start from the basic
empirical model, which is based on farming households’
decisions on whether to grow an IBB variety.
A bean farming household’s expected profit from grow-

ing an IBB variety, as opposed to a regular bean variety,
depends on a set of different variables. These variables
include prices of inputs and outputs; fixed factors such as
farm assets and land holdings; soil characteristics; socioe-
conomic characteristics such as education and wealth;
neighborhood influences (expected profits to neighbors
from adoption); and factors on the supply side, such as
planting material availability in the market.
The latent regression model is shown in Equation (5).

We analyze the outcome of a discrete choice as a reflec-
tion of an underlying regression function. The basic theory
is that the farmer makes a marginal benefit or marginal
cost estimation based on the utility achieved (Greene,
2012). Note that the expected utility in the maximization
problem is a function of profit in the first layer of the
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composite function and themarginal utility of profit is pos-
itive. We model the difference between benefit and cost as
an unobserved variable, 𝑦∗

𝑖
= 𝜋1𝑖 - 𝜋0𝑖 , which represents

the difference in benefits where 𝜋1𝑖 represents the benefits
associated with IBB variety, and π0i the benefits from other
regular bean varieties, such that

𝑦∗
𝑖
= 𝐺𝑖𝛽 + ∈𝑖, ∈𝑖 ∼ 𝑁(0, 𝜎2∈). (4)

We assume that εi has amean of zero. Our only observation
of the data generation process is

𝑦𝑖 = 1 if 𝑦∗
𝑖
> 0

𝑦𝑖 = 0 if 𝑦∗
𝑖
< 0. (5)

The smallholder farming household either grows (Y = 1)
or does not grow (Y= 0) an IBB variety in season B of 2015.
However, smallholder farming households have a choice
to decide how to grow a new variety. For instance, a farm-
ing household may plant all bean areas on all farming
plots or a share with IBB in one or multiple farming plots.
Since there are no farming households that plant thewhole
farm in only one crop, or one variety, the fraction of avail-
able land that is planted with IBB is not relevant in this
study. We hypothesized that a set of intrinsic factors such
as farmer and plot characteristics as well as environmental
factors gathered in a vectorG, explain smallholder farming
households’ decisions, so that:

𝑃𝑟𝑜𝑏 (𝑌 = 1|𝐺) = 𝐹(𝐺, 𝛽)

𝑃𝑟𝑜𝑏 (𝑌 = 0|𝐺) = 1 − 𝐹(𝐺, 𝛽). (6)

The set of parameters βreflects the impact of changes in
G on the probability. For instance, the marginal effect of
a household’s head age on the likelihood of adoption of
IBB may be a factor of interest. Typically, the estimation
of P(G) = Pr(C = 1 | G) is done by means of a nonspatial
probit (NSP) or nonspatial logit model.
We extend the basic choice model to a social interac-

tion choice model. Manski (1993) developed a framework
that describes social interaction in three tenets: (1) endoge-
nous interactions, wherein the propensity of an IBB
grower to behave in some way varies with the behavior
of her/his neighbors; (2) contextual interactions, wherein
the propensity of an IBB grower to behave in some way
varies with exogenous characteristics of his/her neighbors;
(3) correlated effects, wherein smallholder farming house-
holds in the same group tend to behave similarly because
they have similar individual characteristics or face similar
institutional environments.
The social interaction model we employed accounts for

endogenous and contextual effects. First, the endogenous

effect measures the interdependence across bean farming
households with regard to IBB adoption decisions. Inmore
detail, this interdependence refers to how expectations,
preferences, knowledge, or constraints of one smallholder
farming household are directly and indirectly influenced
by the choices of other smallholder farming households
and vice-versa in their communities. The endogenous
effect aims to capture the process by which an individual
farmer learns from his/her neighbors’ decisions and
outcomes of the decisions such as yields and profits.
The IBB grower might then condition his/her target
inputs for differences between his/her own and his/her
neighbors’ observed characteristics when learning from
them (Munshi, 2004). By learning from others (typically
neighbors), a new grower updates her priors about the
unfamiliar technology and adds information on expected
net returns in the optimal (profit-maximizing) problem
of his/her adoption choices (Conley & Udry, 2010; Foster
& Rosenzweig, 1995). In this respect, the prospect and
effectiveness of social learning declines with geograph-
ical distance (Fafchamps, 2010). Comola et al. (2021)
further confirmed the role of neighbors and distance.
The statistical evidence of spatial dependence then can
inform us about the degree of interdependence between
decisions to grow IBB by one smallholder farming
household and those of his/her neighbors. Second, the
peer contextual effect measures which characteristics
of neighbors might influence a smallholder farming
household’s decision to adopt IBB. Many published
studies describe the role of neighbors’ characteristics on
a farmer’s decision to adopt new agricultural technology.
Ellison and Fudenberg (1993) use this argument to justify
simple rules of thumb where farmers learn from similar
neighbors’ choices and the payoffs of these choices.
A panel study by Foster and Rosenzweig (1995) shows the
importance of learning by doing and learning from others
in the adoption and diffusion of high yielding varieties
(HYV) during the Green Revolution in India.
This seminal work shows that lacking knowledge about

the management of the new technology is a barrier to
adoption. Their research also identified that a farmer’s
own experience and neighbors’ experience with HYV
significantly increased the profitability of HYV. Conley
and Udry (2010) provide empirical evidence that spatial
closeness is correlated with the presence of information
links. They report that novice farmers are more likely to
change their inputs in the direction of inputs associated
with positive outputs by their information neighbors.
Our basic premise posits that IBB growers will commu-
nicate about their experience and the benefits of growing
and consuming IBB. The cost of transferring this tacit
knowledge to others is in increasing function of the social
geographic distance between IBB growers and recipients
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of the knowledge. We define this social behavior with an
old adage that goes “a close neighbor is more helpful than
a relative far away.” This assumption may be more accu-
rately applied to smallholder farming households, who
not only learn the profitability of the new technologies
from their neighbors, but also learn the know-how to farm
the new technology. A panel study of technology adoption
in Ghana by Nourani (2019) reports that socially distant
(weak ties) and proximate peers (strong ties) contribute
to distinct objects of learning. Farmers’ interactions with
distant friends help to determine whether to adopt a new
crop based on profitability beliefs, while proximate peers
not only help to provide information on the crop prof-
itability but also share knowledge of how to cultivate the
new crop. Granovetter (1973)’s strength of weak ties claims
that interpersonal networks provide the most effective
micromacro bridge between small-scale interaction and
large- scale patterns. Learning about new technology, such
as growing IBB varieties, sheds light on the uncertainty of
its profitability as well as involves acquiring information
about how to optimally manage the new technology (Fos-
ter & Rosenzweig, 2010). We use farming experience and
management indicators as indicators of tacit knowledge.
We assume farmers’ tacit knowledge to varywith their cog-
nitive, social, cultural, farming experience, and economic
local conditions as well as with their local and external
interactions. The exogenous matrix W is then used to
empirically test the extent of spatial interdependence
between farmers’ decisions as well as spillover effects.
As discussed inWard and Pede (2015), contextual effects

may also influence the adoption of IBB varieties. A small-
holder farmer’s behavior might be affected by the personal
characteristics of proximate peers. For example, the socio-
economic characteristics of neighboring bean farmers,
such as their household size and education level, may have
a positive impact on the farmers’ IBB adoption behavior.
If contextual effects are controlled for and coefficient esti-
mates associated with peer effects do not change, then we
can conclude that the adoption of IBB is conditioned not
only by peer effects but also by contextual factors of neigh-
boring smallholder farmers (Durlauf & Ioannides, 2010;
Ward & Pede, 2015).

2.2 Spatial econometrics

In thismodel, we test two hypotheses, whether the propen-
sity of an individual farming household to grow a new
IBB variety depends on (1) the prevalence of IBB adop-
tion of neighboring farming households and (2) on the
prevalence of the distribution of the characteristics of
neighboring farming households. In spatial econometrics,
social interaction is operationalized by constructing a spa-

tial structure that defines the interdependences among
farming households in which preferences, local knowl-
edge, and constraints faced by one farming household
are directly influenced by the characteristics and choices
of other farming households. We use spatial econometric
theory on Bayesian spatial probit modeling presented by
LeSage et al. (2011) and J. LeSage and Kelley Pace (2009).
The generalmodel for social-spatial interaction takes the

following (matrix) form:

𝑦 = 𝜌𝑊𝑦 + 𝛽1𝑋 + 𝛽2𝑊𝑋 + 𝑢. (7)

𝑢 = 𝑎 + 𝜆𝑊𝑢 + 𝜀. (8)

where the matrix W (n × n) called the spatial weight
matrix, captures the dependence structure between neigh-
boring farming households. y denotes a N × 1 vector con-
sisting of one observation on the dependent variable for
every unit in the sample (i = 1, ..., N). The variable Wy
denotes the endogenous interaction effects among the
dependent variables across neighboring farming house-
holds, X is an n × k matrix of observations on exogenous
variables, WX denotes the exogenous interaction effects
among the independent variables, andWu the interaction
effects among the disturbance terms of the different spatial
units. ρ is called the SAR coefficient, λ is the spatial auto-
correlation coefficient of the disturbance term to capture
remaining exogenous spatially correlated effects, a repre-
sents an n × 1 vector of fixed but unknown parameters to
be estimated, while 𝛽1, just as for 𝛽2 is an n × k matrix of
unknown parameters to be estimated.
For the first hypothesis, we test the endogenous effect

which is also described in the literature as imitation, con-
tagion, bandwagons, social norms, and “keeping up with
the Joneses.” Similar to the standard probit and logitmodel
as presented in Section 2.1 above, where 𝑦∗

𝑖
represents

the latent unobservable utility that depends not only on
observable determinants of household i represented by X,
SPmodeling also depends on the latent utility of the neigh-
boring household 𝑦∗

𝑗
. Restrictions 𝛽2 = 0 and λ= 0 give rise

to the SAR model. (𝐼 − 𝜌𝑊)–1

Inmore detail, the SARmodel, as suggested by J. LeSage
and Kelley Pace (2009), is

𝑦∗
𝑖
= 𝜌𝑊𝑦∗

𝑗
+ 𝛽𝑋 + 𝜀, 𝜀 ∼ 𝑁 (0, 𝐼𝑛) . (9)

The data generating process for 𝑦∗
𝑖
is

𝑦∗
𝑖
= (𝐼𝑛 − 𝜌𝑊)

−1
𝑋𝛽 + (𝐼𝑛 − 𝜌𝑊)

−1
𝜀, 𝜀 ∼ 𝑁 (0, 𝐼𝑛) .

(10)
where (𝐼 − 𝑝𝑊)−1 is the “Leontief inverse” that links the
decision of the smallholder farming household 𝑦∗

𝑖
to all
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the X in the system through a so-called spatial multiplier
(Wilhelm & Godinho de Matos, 2013).
For the secondhypothesis, wemodel the effect of contex-

tual factors on smallholder farming households’ decision
to adopt IBB planting material. We employ a variation
of the SAR model in the analysis of contextual effects—
the Bayesian SDM. This model allows variables from
neighboring farming households contained in the matrix
X to exert an influence on the propensity of IBB adoption
by household i. This is accomplished by adding average-
neighbor values of the explanatory variables, created using
thematrix productWX (Anselin, 1988; Anselin&Rey, 2014;
J. LeSage & Kelley Pace, 2009).
J. LeSage and Kelley Pace (2009) provides the data

generation process of the SDM as

𝑦∗
𝑖
= 𝜌𝑊𝑦∗

𝑗
+ 𝛼1 + 𝛽1𝑋 + 𝛽2𝑊𝑋 + 𝜀, 𝜀 ∼ 𝑁 (0, 𝐼𝑛) . (11)

The spatial lag latent dependent variable𝑊𝑦∗
𝑗
involves the

n × n spatial weight matrixW that contains elements con-
sisting of either one or zero. All elements of the matrixW
are row standardized (non-negative and each row sums to
1). The scalar parameter ρmeasures the strength of depen-
dence, with a value of zero indicating independence. A
NSP model emerges when ρ = 0.
The expression in Equation (7) is the best option to test

for full spatial interaction effects. However, in order to
identify the endogenous and exogenous interaction effects,
which are the ones of our interest in this research, exclud-
ing the spatially correlated effect is the best option (Elhorst,
2010; Manski, 1993). If both hypotheses, 𝛽2 = 0 and
𝛽2 + ρ𝛽1 = 0, stated above are rejected, the SDM is
the best model to describe the data generating process
and also produce unbiased coefficient estimates (Elhorst,
2010). Interpretation of the marginal effects are presented
in Appendix A.

2.3 Multilevel model

As a robustness test, we ran a new set of regressions
with fixed and random effects. To do so, our multilevel
data structure included villages in the upper level and
smallholder farming households nested within villages.
Multilevel models are useful to account for intervillage
variations in the data via estimation of the variance of
random effects (Bivand et al., 2017).We carried out amulti-
level Bayesian analysis of latent Gaussianmodels using the
Integrated Nested Laplace Approximation (INLA) (Rue
et al., 2009). In a sample of villages, the model with fixed
and random effects treats observations from a given vil-
lage as a cluster, and assumes a random effect for each
cluster (Goldstein, 2003). We define 𝜇𝑖𝑣 = (𝑌𝑖𝑣|𝑈𝑣). Let

𝑌𝑖𝑣 be the response of smallholder farming household i
village v, i = i1, ..., nv. In our case, the responses are
adoption of IBB planting material. We implemented i.i.d
random effect term U at the upper village level. The i.i.d
randomeffect representation implies (1) strong intravillage
dependence between the outcomes of lower-level obser-
vations here smallholder farming households and (2)
independence between the village random effects. The
general mixed model has the form,

𝑔 (𝜇𝑖𝑣) = 𝛾𝑋 + 𝑈𝑣; 𝑖 = 𝑖1 , … , 𝑛𝑣; 𝑣

= 1,… , 81; 𝑢𝑣 ∼ 𝑁 (0, 𝜏𝑢) . (12)

g is the link function, for binary outcomes is the logit
link. 𝑋𝑖𝑣 denotes a vector of explanatory variables such as
household head age, years of farming experience, house-
hold size, wealth index, and the number of bean varieties
cultivated, for fixed-effect model parameters γ.𝑈𝑣 denotes
the vector of random effects for village 𝑣. This is common
to all observations in the cluster. Note that 𝑛𝑣 repre-
sents the number of smallholder farming households in
village 𝑣. Village 𝑣 is indexed from 1 to 81. The ran-
dom effect vector 𝑈𝑣 is assumed to have a multivariate
normal distribution N (0, 𝜏𝑢). The covariance matrix τ
depends on unknown variance components and corre-
lation parameters. Parameters pertaining to the random
effects can also serve as a useful summary of the degree
of heterogeneity of the population of smallholder farming
households.
In sum, multilevel modeling aims to distinguish

between two types of spatial dependence: vertical and
horizontal (Dong & Harris, 2015). The former refers to
the process in which the outcomes of lower-level units,
that is, smallholder farming households nested in villages,
are correlated because they are affected by the same
factors. Horizontal dependence is associated with spatial
econometrics, which arises from the social interaction or
spillover effects among spatial entities due to geographic
proximity. The parameters pertaining to the random effect
are of interest as useful summary statistics of the degree
of heterogeneity of smallholder farming households. We
expect the random effect to reveal a spatial relationship at
the village level. For instance, villages located close to each
other will tend to be more similar compared to villages
located farther away. Studies on agricultural technology
adoption show that smallholder farming households
located closer to midsize or large market centers may
have similar characteristics, such as access to agricultural
inputs. Farmers located further away from these market
centers may gradually change from being peri-urban
to smallholder farmers with intrinsic characteristics of
remote rural areas.
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2.4 Data and descriptive statistics

The data to conduct this research comes from an adoption
assessment study conducted inRwanda in seasonBof 2015.
The main aim of the survey is to investigate the adoption
of iron bean varieties among Rwandan bean farmers. Data
collection was split into two parts: a listing survey and a
household survey. The former was conducted at the begin-
ning of season B of 2015, where 19,575 households were
listed in 120 randomly selected villages, from amaster sam-
ple of 3,390 villages (representing 14,000 villages in the
country) of which 93% were bean growers. The sampling
frame for the second survey was derived from the former.
Equal probability sampling was used to randomly select
12 households in each of the 120 villages, and 1,397 bean-
farming households were interviewed (Asare-Marfo et al.,
2016). The survey instrument consisted of 12 modules; we
used data from eight out of 12 to run all statistical analyses.
These modules include information on household roster,
plot characteristics, bean production, bean varietal traits,
iron bean adoption history, household assets, and housing
characteristics.
Sources of IBB planting materials varied. About 40% of

IBB growers obtained their seed either from local mar-
kets, HarvestPlusmarketingmechanisms, or through RAB
extension services and NGO’s. One third of IBB growers
recycled IBB seed from previous seasons, while 27% of IBB
growers received plantingmaterial from friends, neighbors
or relatives. Results from our spatial econometric models
show significant interdependence between bean farmers’
decisions to adopt IBB. The scalar ρ measures the degree
of spatial diffusion among IBB growers. The scalar ranges
from .25 to .42 suggesting that in addition of the direct
beneficiaries the biofortification program spillover indirect
beneficiaries to grow IBB.
The high intensity of IBB adoption in the eastern region

has been propelled in part by the high density of delivery
systems that enhance access to IBB seed to smallholder
bean farmers, as shown in Figure B2 (see Appendix B). For
practical purposes of our analysis, we rescaled the density
map to squares of 10 km × 10 km. Therefore, the density
values are reported as the number of points or delivery
venues per 100 square kilometers. We observe a high den-
sity of delivery mechanisms on the Eastern region with
lower density values over the Northern region.
Table 1 reports descriptive statistics by adoption status

for the most important characteristics of the 1,394 inter-
viewed bean growing households in 2,516 plots and 3,017
subplots. Of these households, 36% cultivated only bush
beans, 44% cultivated only climbing beans and 20% culti-
vated both bush and climbing beans. Bush and climbing
bean adopters come from two different data generating

processes. Climbing beans grow tall and need a stake for
support with a yield potential (biologically) of four tons per
ha, while bush beans grow about two to three feet tall and
do not require support with a yield potential of three tons
(biologically) per hectare. These differences are the main
reasons we set-up different econometric models for them.

2.5 Specification

We used the nomenclature M1 and M2 for the two spec-
ifications used for each of the NSP and SP models as
specified in Subsections 2.1 and 2.2, respectively. Speci-
fication M1 aims to test how household characteristics
such as wealth (proxied by a household asset index - see
Appendix C), household composition, iron bean consump-
tion, and years of farming experience play a role in IBB
adoption. In addition, it explores the role of a number of
varieties used to manage the risk of food insecurity due to
crop failure brought on by drought. Specification M2, on
the other hand, looks at the importance of household tech-
nical capacitymeasured through themanagement index in
connection with the education level and household size.
The independent variable in this study may be also spa-
tially correlated between villages. For instance, villages
occupying the same soil type may share similar soil char-
acteristics. As a proxy of soil quality, we used the slope of
the farming plots. The latent variable for the adoption of
IBB corresponds to the unobserved profitability. For the
construction of the spatial weight matrix, we determine a
k nearest neighbor in conjunction with an inverse bilateral
distance.
The specification of the covariates is key and in line

with economic theory. Table 1 shows relevant factors driv-
ing IBB adoption that include household characteristics,
farm characteristics, management practices, and regional
geographic variables. We combine the row-normalized
adjacency weight matrix with the inverse distance weight.
Thus, if for every one smallholder farming household there
are other k other smallholder farming households, then

each weight will be 𝑊𝑖𝑗 =

1

𝑑𝑖𝑗∑
𝑘≠𝑗

1

𝑑𝑖𝑗

. Previous research by

J. Lesage and Pace (2014) shows robust estimates on the
true partial derivatives (effects) and the spatial autocorre-
lation to different spatial weight matrices, such as nearest
neighbors, inverse distance with decay influence based on
a cut-off distance, and/or the number of neighbors. We
found similar results to these findings. Models differing
only inW yielded similar impacts (partial derivatives).
In Rwanda, more than 80% of the economically active

population is involved in agriculture. In this study,
on average, households with more economically active
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TABLE 1 Characteristics of adopters and nonadopters of IBB in Rwanda

Variables Non-adopters HIB adopters p-level*
Household characteristics
Number of women 12–49 years old 2.03 2.22 .00
Number of individuals 0–19 < = > = 65 years old 2.77 2.92 .12
Number of people per household 4.80 5.14 .01
Dependency ratio (children) 1.39 1.43 .51
Number of individuals per household - Economic active population [18–65] 2.68 2.93 .00
Female household head (proportion of households) .27 .26 .66
Number of male members per households 2.22 2.54 .00
Age of household head (years) 46.77 46.83 .94
Level of education (average number of years in education per household) 2.82 3.46 .00
Wealth Index .42 .47 .00
Years of farming experience 8.10 7.13 .07
Farm characteristics and management practices
Number of crops 1.78 1.87 .08
Number of plots 2.97 3.34 .00
Number of varieties 2.44 4.34 .00
Percentage rented in land 13.97 11.06 .08
Percentage own title 70.24 73.45 .18
Percentage no title 13.17 14.07 .63
Percentage share cropping 1.81 .86 .08
Total farmland (m2) 2369.91 3092.79 .00
Management index .39 .45 .00
Weighted plot slope (percent) 12.87 12.25 .19
Land labor ratio (m2/person) 998.82 1153.23 .08
Time to plot (minutes) 15.45 15.36 .94
Land terraced (proportion of households) .22 .26 .13
Plot irrigated (proportion of households) .06 .09 .08
Hired labor (proportion of households) .35 .49 .00
Applied fertilizers (proportion of households) .20 .26 .03
Applied manure (proportion of households) .77 .86 .00
Applied compost (proportion of households) .59 .66 .02
Applied pesticide (proportion of households) .09 .10 .56
Bean area m2 (proportion of households) 1545.58 1927.93 .00
Bean consumption (proportion of households) .06 .09 .00
Weighted average yield (kg/ha) 850.18 870.44 .54
Access to credit (proportion of households) .21 .20 .54
Geography
Kigali region (proportion of households) .02 .02 .81
Southern region (proportion of households) .27 .28 .80
Western region (proportion of households) .26 .16 .00
Northern (proportion of households) .21 .20 .54
Travel time (minutes) to cities equal or greater than 50,000 inhabitants 248.80 254.65 .54
DEM (meters) 1734.27 1658.07 .00
Drought index −.03 −.03 .70
Number of observations 962.00 432.00

*We are testing that the mean difference is zero and is a difference t-test p-value.
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members have a higher propensity to adopt IBB, suggest-
ing that available labor is a consideration in the decision
to adopt. The difference in the average household family
size is statistically significant between adopters and non-
adopters, suggesting the need to meet food demand in the
household.
The average education of household members that grew

IBB is statistically greater than for nonadopting house-
holds, indicating that higher education influences the
adoption of new technology and is positively correlated
with wealth. Three mechanisms related to human capital
have been identified in the literature to explain the tech-
nology adoption: (1) more educated agents are wealthier
and thus, the education–adoption relationship represents
an income effect; (2) more educated agents have better
access to information; and (3) more educated agents are
better able to learn/internalize new information. The
last mechanism has always been the focus of economists
(Foster & Rosenzweig, 2010). Numerous studies find a
significant relationship between education indicators and
farm productivity. Since the adoption of innovation gen-
erally increases productivity, the importance of education
in affecting adoption behavior is implicit. Jamison and
Moock (1984) test the effect of schooling and extension
contacts on the adoption and diffusion of agriculture
technology in Nepal. They find that schooling influences
adoptive behavior, but that household income mediates
the adoption decision. Weir and Knight (2007) find that
household-level education in Ethiopia is an important
factor in adoption, and that early adopters tend to be more
educated and to influence their neighbors. Giné and Yang
(2009) find that farmers’ education, income, and wealth
were positively correlated with the take-up of insured
loans to adopt a new crop technology in Malawi.
Adopters managed more plots and varieties over larger

cropped land areas. These behaviors could be associated
with a household’s food security strategy where house-
holds use mixed bean seeds (local, improved, and iron-
biofortified) to reduce the risk of food insecurity related to
crop failure or poor crop yield performance of a specific
bean variety.
Adopters own larger farmland. The size of the farmmay

have different effects on the adoption rate, depending on
the characteristics of the technology. A wide variety of
empirical results interpreted in the context of the theoret-
ical literature suggests that farm size is a proxy for many
potentially important factors, such as access to credit,
capacity to bear risk, access to scarce inputs, wealth, and
access to information (Foster & Rosenzweig, 2010; Hall &
Khan, 2003).
In this study, we found that land ownership affects the

adoption of IBB. A number of empirical and descriptive
studies have also considered the effects of land tenure

arrangements (which is often considered to be a good
proxy for wealth), and the proportion of farms rented
on the adoption of new agricultural technology, such as
improved, high-yielding varieties. Findings suggest that
the form of land tenure (e.g., renters, sharecroppers,
landowners) may affect the adoption decisions and dif-
fusion rates. Shiferaw and Holden (2005) investigated
the adoption of plot level land conservation practices in
Ethiopia and did not find the tenure regime for a plot to
have a significant effect on adoption.
About 27% of IBB growers received planting mate-

rial from friends or relatives. The characteristics of a
social network—a farmer’s social links through which
information, goods, money, and services flow—are fac-
tors that might induce technology adoption and diffusion
(Maertens & Barrett, 2013). Krishnan and Patnam (2014)
find evidence that social learningwasmore persistent than
learning from extension services for the adoption of new
varieties and fertilizer in Ethiopia. Conley and Udry (2010)
examine how learning from the experience of others and
the flow of information depends on the structure of social
networks when there is no access to agricultural extension
services. Foster and Rosenzweig (1995) find that farm-
ers with neighbors who have more farming experience
have higher profits than those without such neighbors.
Ward and Pede (2015) found that the neighbor effect is an
important determinant of the use of hybrid rice.
As a proxy of household economic well-being and tech-

nical capacity, we used the wealth index and the manage-
ment index, respectively (see Appendix C). Adopters were
wealthier, more technical in their crop management prac-
tices, and experienced higher yields. Households located
in the Northern Province on average had the highest man-
agement index, followed by the Western and Southern
provinces. Management practices refer to the methods
bean farmers use to increase productivity. Households in
the city of Kigali or Central region were on average wealth-
ier than farmers fromother regions. The second-wealthiest
rural households were located in the Western region, fol-
lowed by households in the Northern region. There are
fewerwealthy families in the southern and eastern regions.
We used the slope of the cultivated land as an indicator

of soil quality. On the one hand, soils with an increasing
slope gradient tend to be shallower with undesired prop-
erties such as an increased potential for surface erosion.
On the other hand, soils on less steep terrain tend to accu-
mulate sediments, have amore complex soil structure, and
retain soilmoisture (FAO, 2000).We expect growing condi-
tions to be positively spatially correlated across neighbor-
ing farming households. In addition to climate variables
(rain and temperature), soil types and topographic char-
acteristics are likely to not only be shared among nearby
farming households but also vary across villages.
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We included regional geographical variables to control
for the disparities in the quality of road infrastructure and
accessibility to extension services. Travel time to extension
services and medium-sized cities is a measure of geo-
graphic accessibility. Access is defined as the time needed
to travel from a specific household to the nearest loca-
tion of interest. Good transportation is associated with
the diffusion of technology, better access to inputs, and
lower transportation costs. Travel time is estimated using
an algorithm that factors road quality, speed, slope, and
biophysical characteristics. A detailed explanation for esti-
mating access to markets is presented by Ulimwengu et al.
(2009, p. 15).
For model comparison, we estimated the log-likelihood

as a measure of fit adjusted for model complexity. We also
reported two information criteria, the Bayes (Schwarz)
information criterion (BIC) and the Akaike information
criterion (AIC) measures. To compare the multilevel
and the spatial Bayesian models, we estimated mea-
sures of complexity and fit such as the model’s deviance
information criterion (DIC). Smaller values of the DIC
indicate a better trade-off between complexity and fit of
the model. The Watanabe–Akaike information criterion
(WAIC), also known as the widely applicable Bayesian
information criterion, is similar to the DIC but the effec-
tive number of parameters is computed in a different way.
See Watanabe (2013) and Gelman et al. (2014) for details.

3 RESULTS AND DISCUSSION

3.1 Spatial econometric analysis:
adoption model estimates (NSP vs. SP
models)

The coefficient estimates (posterior means, standard devi-
ations, and Bayesian p-levels) of the two specifications (M1
andM2) for two spatial models (SAR and SDM) and a NSP
model are shown in Tables 2 and 3, while Tables 4–7 and
8–11 show the estimated averagemarginal effects. Tables 4–
7 and 8–11 are the basis for inference regarding the effect of
changes in the various independent variables on the proba-
bilities that bean farmers will adopt IBB and on the spatial
spillover effect on neighboring bean farmers. We also
tested the robustness of our results. Table E1 shows pos-
terior means (standard deviations) of a multilevel spatially
structured fixed and random effects model.
For each scenario, we use a standard generalized lin-

ear model (GLM) probit model and two SP models. We
describe and compare the averagemarginal effects for each
model. There are four common covariates in both specifi-
cations: number of children in the household, the number
of varieties, age of household head, and accessibility to

extension services. The specification M1 aims to test how
household characteristics, such as wealth (based on an
asset-based wealth index as explained in Appendix C),
household composition, and years of farming experience,
play a role in IBB adoption. In addition, the M1 scenario
explores the role of the number of varieties (excludes IBB
varieties) used to manage the risk of food insecurity due
to crop failure caused by drought. The specification M2,
on the other hand, looks at the importance of household
management technical capacity measured through a man-
agement index in connection with education level and
household size (see Appendix C). M2 does not include the
wealth index because of its positive correlation with the
management index and education level.
For all NSP models, we computed and reported a

diagnostics test (Kelejian-Prucha (error)) for spatial depen-
dence. The diagnostic tests for all probit models were
positive and significant; therefore SP models are used to
calculate the probability, P(x) = Pr(D = 1|X), or propen-
sity, of being an IBB grower for each observation. We
only report the marginal direct and indirect effects of
the SP model. Models are compared using log-likelihood
and information criteria, such as AIC and BIC (Schwartz’
Bayesian Information Criterion). For model comparison
using the log-likelihood value, models with log-likelihood
values closer to zero are considered better models. While
formodel comparison using the information criteria, mod-
els with smaller values of these criteria are considered
better models. We reported the DIC values to compare
the spatial models, as estimated using Bayesian methods.
Lower DIC values indicate a better fit for Bayesianmodels.
We also reported the Raftery–Lewis diagnostics for each
specification. We reported the diagnostic statistics based
on a 95% interval using .05 and .95 quantiles with the
desired accuracy equal to .02. Table D1 (see Appendix D)
shows the Raftery–Lewis diagnostics. The “Lower bound”
column represents the number of draws that would be
required if the draws represented an i.i.d chain. The “Total”
column indicates the total number of draws needed to
achieve the desired accuracy for each parameter. The i-
statistic presents the ratio of the “Total” to the “Lower
bound” column. For the bush bean specifications, the total
number of draws ranges from 394 to 632 draws, which
are the number of draws required to achieve the desired
accuracy for each parameter. For the climbing bean speci-
fications, the total number of draws ranges from 407 to 591
draws. In the last column of Table D1 according to Raftery
and Lewis (1992), an i-statistic exceeding five is indicative
of convergence problems with the sampler. In the spec-
ifications for both climbing and bush bean growers, the
i-statistics is below this theoretical threshold.
SP models, such as SAR and SDM, allowed us to dis-

entangle the total marginal effect into direct and indirect
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TABLE 2 SAR, SDM, and GLM probit model estimate for bush bean farmers

Variables M1.SAR M1.SDM M1.NSP M2.SAR M2.SDM M2.NSP
Rho .3088*** .2976*** .4238*** .3845**

(.0912) (.079) (.0908) (.1014)
Constant −5.1800 −7.663 −3.9980 −5.1349 −4.4040 −1.5507***

(8.918) (9.3890) (8.9410) (8.0632) (8.0910) (.3252)
Household (HH) size .0047 .0009 .0779***

(.0385) (.0384) (.0293)
Number of economic active males in HH .1709** .1709*** .1606**

(.0634) (.0635) (.0614)
Number of children under 5 years old in HH −.1666 −.1676** −.1658** −.1422 −.1378 .0048

(.1095) (.0995) (.1025) (.1012) (.1012) (.0919)
Log (HH head age) 2.646 3.9860 1.9350 2.6797 2.7694 1.7640

(4.769) (5.0620) (4.8100) (4.3147) (4.3155) (4.0634)
(Log (HH head age)) 2 −.4794 −.6666 −.3776 −.4016 −.4119 −.2210

(.634) (.6783) (.6441) (.5697) (.5699) (.5329)
HH average years of schooling .0237 .0266 .0961***

(.0398) (.0413) (.0315)
Wealth Index (0-1) .4080 .3771 .3103**

(.5133) (.5268) (.4946)
Number of varieties cultivated .3091*** .3106*** .2930***

(.0423) (.0420) (.0408)
Farming experience (years) .0381*** .0391*** .0355***

(.0102) (.0112) (.0103)
Share of land area with legal title .0016 .0013 −.0014

(.0014) (.0015) (.0014)
Management Index (0-1) .7176** .8117** .5630**

(.2989) (.2927) (.2795)
Weighted plot slope −.0002 −.0004 .0002

(.0085) (.0091) (.0080)
Land labor ratio (m2/person) −.0001 .0002 -.0001

(.0001) (.0001) (.0001)
Travel time to extension services >1 h −.0088 .0941 −.0011 .0167 .1237* −.0110

(.0222) (.0829) (.0227) (.0175) (.071) (.0205)
Planting material from friends or relatives 10.1000*** 17.1600*** 26.1100

(3.0200) (4.2730) (803.800)
W-HH size .020

(.070)
W-Number of males in HH .0810

(.1347)
W-Number of children under 5 years old in HH −.1221 −.3295*

(.1868) (.1873)
W-Log (HH head age) −.0085 −.0147

(.0127) (.0089)
W-HH average years of schooling −.0932

(.0759)
W-Wealth Index .6714

(1.0120)
(Continues)
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TABLE 2 (Continued)

Variables M1.SAR M1.SDM M1.NSP M2.SAR M2.SDM M2.NSP
W-Number of varieties cultivated .1082

(.0764)
W-Farming experience (years) .0115

(.0206)
W-Share of land area with legal title .0029

(.0027)
W-Management Index .1522

(.5734)
W-Weighted plot slope .0382**

(.0148)
W-land labor ratio (m2/person) −.0002**

(.0001)
W-Travel time to extension services >1 h −.1066 −.0096

(.0854) (.0712)
W-Planting mat. From friends or relatives −1.8440*

(1.0020)
Kelejian-Prucha (error) 3.987*** 4.618***
Log likelihood −205.4803 −197.3877 −211.0308 −294.6993 −289.8208 −294.343
BIC 486.6358 519.3199 569.6778 653.8916 685.4927 644.7248
AIC 435.9174 434.7892 444.06 611.6262 613.6415 606.686
DIC 434.650 432.310 594.54 597.370

Note: () are standardized errors. *, ** and *** denote significance at the 10%, 5%, and 1% level, respectively.

impacts. Direct effects and indirect effects are different
among smallholder farming households. The direct effect
measures how a change in an explanatory variable in
household i affects the dependent variable in household
i, plus any feedback effects. The indirect effects measure
how changes in the explanatory variables associated
with household i cumulatively impact the dependent
variable in all other households with a decaying effect for
farmers located farther away. These effects are referred
to as spatial spillovers. The statistically significant spatial
autocorrelation coefficient ρ, on the endogenous lagged
dependent variable in the SAR and SDMmodels, measures
the strength of spatial interdependence in smallholder
farming households’ decisions regarding adoption of IBB.
The case of the SDM interaction model assumes that
an individual smallholder farming household is equally
influenced by neighboring farming households, so that
the endogenous and contextual effects are specified as
the average outcomes and characteristics of the peers,
respectively.
In Tables 2 and 3, the scalar parameter rho (ρ) is differ-

ent from 0 and statistically significant at 1%. Its magnitude
varies from .30 to .42, suggesting significant interdepen-
dence in smallholder bean farming households’ decisions
regarding the adoption of IBB varieties as well as spatial
spillovers. In the context of spatial models when ρ= 0, the

interpretation of the marginal effect of a one-unit change
in x on y, ceteris paribus, is no longer valid. For the SDM
models1, the results for the total, direct, and indirect effects
depend on two-parameter vectors 𝛽1 and 𝛽2. In this partic-
ular case, spatial spillovers are a function of (1) the location
of bean farming households, (2) the social geographic dis-
tance between bean farming households captured by the
element 𝑊𝑖𝑗 , (3) the parameter rho that measures the
degree of spatial interdependence in smallholder farming
households’ decisions, and (4) the magnitude of the coeffi-
cients for 𝛽1 and 𝛽2. Moreover, for the SDM models, the
indirect effect is divided into two parts: the local effects
due to the 𝛽2 coefficient, and the global effects arising from
the inverse matrix involving ρ. The first effects are local
because their impact is on immediate smallholder farm-
ing households, if the element 𝑊𝑖𝑗 of the spatial weights
matrix is nonzero which implies contextual effects. The
second effects are global influence because affect all bean
farmers through the spatial multiplier (𝐼 − 𝜌𝑊)−1, where

1When running the Spatial Durbin Model (SDM), it is important to note
that the coefficients of the lag variables for farming experience and the
management index are not significantly different from zero. Therefore,
these outcomes should not be treated as a rejection to the existence of
spatial spillovers. Instead, inferences should be made on the estimates of
the cumulative effects (partial derivatives) described in Appendix A
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TABLE 3 SAR, SDM, and GLM probit model estimate for climbing bean farmers

Variables M1.SAR M1.SDM M1.NSP M2.SAR M2.SDM M2.NSP
Rho .2542*** .2832* .4172*** .4162**

(.0841) (.0943) (.0995) (.0967)
Constant −1.3800 −3.099 −1.9070 −4.1959 −3.6150 −4.9466***

(8.3210) (8.746) (8.394) (7.4189) (7.7029) (7.6498)
Household (HH) size .0743*** .0768*** .0700***

(.0354) (.0345) (.0334)
Number of economic active males in HH .0497 .0467 .0391

(.0581) (.0577) (.0577)
Number of children under 5 years old in HH −.0083 .0080 −.0010 .0026 .0321 .0167

(.0901) (.1004) (.0943) (.0992) (.1020) (.0952)
Log (HH head age) −.8866 .1090 −.5477 1.5313 1.3905 1.7640

(4.4330) (4.6530) (4.4750) (3.9432) (4.0670) (4.0634)
(Log (HH head age)) 2 .2175 .0767 −.1585 −.1929 −.1703 −.2210

(.5893) (.6178) (.5949) (.5162) (.5328) (.5329)
HH average years of schooling .0966*** .0976*** .0961***

(.0314) (.0324) (.0315)
Wealth Index (0-1) .9898** 1.1840** 1.0720**

(.4710) (.4810) (.4646)
Number of varieties cultivated .2262*** .2340*** .2198***

(.0389) (.0399) (.0382)
Farming experience (years) −.0434** −.0374*** −.0351**

(.0168) (.0158) (.0164)
Share of land area with legal title −.0013 −.0008 −.0014

(.0014) (.0014) (.0014)
Management Index (0-1) .4921* .5202* .5630**

(.2726) (.3093) (.2795)
Weighted plot slope −.0098 −.0127* −.0097

(.0067) (.007) (.0068)
Land labor ratio (m2/person) .0000 -.0001 -.0001

(.0001) (.0001) (.0001)
Travel time to extension services >1 h .0138 .0184 .0011 −.0057 −.0063 −.0110

(.0207) (.0791) (.0227) (.0196) (.0501) (.0205)
Planting material from friends or relatives 14.1900*** 13.0500*** 27.7300

(4.2260) (3.6360) (670.2000)
W-HH size .0443

(.0595)
W-Number of males in HH .1038

(.1138)
W-Number of children under 5 years old in HH −.3361* −.1889

(.1856) (.1779)
W-Log (HH head age) .0088 .0029

(.0114) (.0088)
W-HH average years of schooling −.0214

(.0845)
W-Wealth Index −.9495

(.9019)
(Continues)
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TABLE 3 (Continued)

Variables M1.SAR M1.SDM M1.NSP M2.SAR M2.SDM M2.NSP
W-Number of varieties cultivated −.0219***

(.0698)
W-Farming experience (years) −.0211

(.0191)
W-Share of land area with legal title −.0039

(.0026)
W-Management Index .4490

(.4665)
W-Weighted plot slope .0214

(.0117)
W-land labor ratio (m2/person) .0001

(.0001)
W-Travel time to extension services >1 h −.0060 −.0096

(.0804) (.0678)
W-Planting mat. From friends or relatives .0082

(.8535)
Kelejian-Prucha (error) 3.987*** 4.618***
Log likelihood −249.5146 −244.1141 −252.6889 −326.7116 −322.4651 −326.984
BIC 576.0496 623.0139 575.9799 712.0938 747.9928 711.7333
AIC 523.0293 530.2282 527.3779 672.3285 677.299 671.968
DIC 539.510 520.320 664.410 664.260

Note: () are standardized errors. *, ** and *** denote significance at the 10%, 5%, and 1% level, respectively.

the matrix 𝑊𝑖𝑗 is a peer matrix. This spatial multiplier
indicates there is a global social multiplier in the sys-
tem that indirectly affect nonbeneficiaries. Important to
note that we assume the weight matrix is exogenous.
The spatial connectivity matrix W serves as an appropri-
ate instrument that allows identifying endogenous social
interactions effect defined asWy and exogenous or contex-
tual effectWX. In other words, each pairwise interaction of
smallholder farming households has an endogenous social
effect of the contemporaneous influences of peers ρ and
the exogenous effect includes characteristics of peers 𝛽2.
In the SARmodels, these effects depend only on the first β
parameter vector. The SAR models have a common mul-
tiplier for each variable. This global multiplier indicates
that changes in a smallholder farming household’s deci-
sion to adopt IBB will affect the decision of smallholder
farming households everywhere. Also, important to note is
that variables’ values are not likely to be distributed inde-
pendently. For instance, explanatory variables may exhibit
spatial dependence.
Although we do not control for spatial fixed effects,

Anselin and Arribas-Bel (2013) have shown through mul-
tiple simulations that when the data generating process
is a SAR model, spatial fixed effects may be spurious.
Their experiment also shows that spatial fixed effects only
control for spatial correlation when the data generation

processes correspond to a block structure which violates
the principle of spatial interaction.
In general and comparing the absolute values of the

coefficients, the SAR model’s indirect effects are smaller
than the direct effects. The SAR model’s direct impacts
were statistically indifferent from the direct effects of the
NS probit model’s direct impacts in terms of both sign and
magnitude. Below, we provide a discussion of the average
marginal effect for the SAR and SDMmodels.

3.2 Bush bean analyses

Table 2 shows the results of M1 and M2 on bush bean
varieties. We observe that the signs of some covariates are
consistent in the SP models and NSP models. Farming
experience, planting material from friends and relatives,
the numbers of bean varieties cultivated, the management
index, and the number of male members in the household
have a positive influence on the propensity of adoption
of IBB bush varieties, while the numbers of children in
the household have a negative influence. In the next sec-
tion, we will discuss in more detail the significance level,
magnitude, and sign of the average marginal effect of each
variable through summary measures of direct, indirect,
and total effects.
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TABLE 4 SAR and GLM probit model effect estimates for bush bean growers (M1)

Direct effect Indirect effect Total effect

Variables
Lower
.05 Coefficient

Upper
.95

Lower
.05 Coefficient

Upper
.95

Lower
.05 Coefficient

Upper
.95 NSP

Number of
economic
active males
in HH

.0159 .0381 .0610 .0043 .0166 .0340 .0221 .0547 .0890 .0372

Number of
children
under 5 years
old in HH

−.0769 −.0372 .0050 −.0384 −.0159 .0020 −.1088 −.0532 .0060 −.0384

Log (Household
head age)

−1.1110 .5962 2.3640 −.4598 .2556 1.1470 −1.5770 .8518 3.3680 .4483

(Log
(Household
head age))2

−.3451 −.1078 .1200 −.1674 −.0464 .0450 −.4883 −.1541 .1730 −.0875

Wealth Index −.0913 .0912 .2790 −.0404 .0371 .1280 −.1318 .1283 .3930 .0719
Number of
varieties
cultivated

.0558 .0690 .0830 .0115 .0298 .0540 .0756 .0988 .1290 .0679

Farming
experience
(years)

.0048 .0085 .0120 .0012 .0037 .0070 .0066 .0122 .0180 .0082

Land labor ratio
(m2/person)

.0000 .0000 .0000 .0000 .0000 .0000 −.0001 .0000 .0000 .0000

Travel time to
extension
services >1 h

−.0098 −.0020 .0060 −.0048 −.0009 .0020 −.0148 −.0029 .0080 −.0006

Planting
material from
friends or
relatives

1.2690 2.2630 3.4650 .4327 .9070 1.4500 1.9730 3.1700 4.5550 6.0480

Tables 4–7 shows the significance level and marginal
effect outputs for the NSP and SP models for bush bean
growers. The first column lists all the variables used in each
model specification. Columns with the headings direct,
indirect effect, and total effect show the posterior means
and their respective lower (5%) and upper (95%) bounds
confidence intervals for the SAR SP model. The last col-
umn corresponds to the marginal effect of the standard
NSP model, which is equivalent to the direct effect of the
SAR models.
Table 4 presents own partial derivatives (direct effect),

𝑍𝑖∕𝑋𝑣𝑖, cross-partials derivatives (indirect effect), 𝑍𝑖∕𝑋𝑣𝑗,
or spatial spillover effects in the case of spatial depen-
dence. Of the household characteristics evaluated at the
samplemeans inTable 4, farming experience had a positive
and significant effect of 1% and a spatial spillover effect of
about .3% for every additional year of farming experience,
resulting in a total effect of 1.22%, ceteris paribus. Indirect
effects are accumulated across all neighboring farmers, so

the impact on individual farmers is likely smaller than the
direct effects. In this particular case, we have observed that
experienced smallholder farming households are more
likely to change their preference for planting IBB seeds.
This observation can also be applied to neighboring farm-
ers. Farming experience is useful in the early stages of
adoption when farmers are still testing the potential agri-
cultural benefits of IBB. As bean farmers accumulate
farming experience, they progressively change from tradi-
tional agricultural technologies to improved technologies
on the basis of observed performance and learning by
doing (Feder et al., 1985). We argue that the best way to
transfer the advantages of new technologies is through
face-to-face interaction, such as the classic example of an
expert-novice relationship. We used farming experience
and the management index as a proxy to transfer forms of
tacit knowledge, such as the agronomic, nutritional ben-
efits, input needed, yield, market prices, and demand for
IBB. Howells (2002) argued that tacit knowledge concerns
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TABLE 5 SDM probit model effect estimates for bush bean growers (M1)

Direct effect Indirect effect Total effect

Variables
Lower
.05 Coefficient

Upper
.95

Lower
.05 Coefficient

Upper
.95

Lower
.05 Coefficient

Upper
.95

Number of
economic
active males
in HH

.0140 .0358 .0580 .0049 .0157 .0310 .0202 .0514 .0850

Number of
children
under 5 years
old in HH

−.0694 −.0350 −.0010 −.0352 −.0155 −.0010 −.1024 −.0506 −.0020

Log (Household
head age)

−.8809 .8359 2.5210 −.3629 .3713 1.2630 −1.2510 1.2070 3.8490

(Log
(Household
head age))2

−.3714 −.1397 .0880 −.1847 −.0619 .0360 −.5518 −.2016 .1270

Wealth index −.0951 .0780 .2560 −.0377 .0354 .1290 −.1328 .1134 .3720
Number of
varieties
cultivated

.0518 .0649 .0780 .0134 .0286 .0470 .0695 .0936 .1180

Farming
experience
(years)

.0046 .0082 .0120 .0014 .0036 .0070 .0064 .0118 .0180

Land labor ratio
(m2/person)

.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

Travel time to
extension
services >1 h

−.0088 .0198 .0500 −.0033 .0087 .0240 −.0126 .0285 .0710

Planting
material from
friends or
relatives

2.2790 3.6010 5.2290 .7647 1.5210 2.3690 3.3140 5.1220 7.0990

with direct experience and is acquired through informal
take- up of learned behaviors and procedures. We found
that adoption by friends or relatives was positively corre-
lated with the diffusion of IBB bush varieties. This finding
broadly supports the theoretical work that links adoption
of technology with social networks. Having male house-
hold members had a positive effect, with one additional
male member increasing the adoption rate by 4%, and a
positive indirect effect of 2%. Households are averse to
adopting new varieties given the risk and uncertainty of
their future performance. As a coping strategy tominimize
the chances of food insecurity, householdsmanage the risk
of crop failure by cultivating multiple varieties. Growing
an additional bean variety increases the probability of IBB
adoption by 7% and a spatial spillover by 3%. The planting
materials of relatives and friends had a positive direct and
spatial spillover effect. Social interactions not only serve as
a conduit for the dissemination of information, but also for
the multiplication of IBB planting material.

Specification M2 aims to check the consistency of the
estimated causal effect (Tables 2 and 6). We use four new
covariates: household access to title land, household size,
education level, and the management index or technical
capacity. Due to the collinearity with thewealth index vari-
ables, we exclude the management index and education
level variables in specification M1. The scalar parameter
ρ in Table 2 measures the strength of spatial interdepen-
dence of the IBB propensity of adoption, with a value of
zero indicating independence. Of the seven variables in
Table 6, the effect of household management practices is
statistically significant and positive. To capture the level
of agricultural practices, the management index serves as
a proxy of the inputs used by smallholder farming house-
holds in the current period Xt. When the management
index increases from the lowest value of 0 to the highest
value of 1, the probability of adoption will increase by 23%,
the spillover effect will be around 17%, and the total effect
will be 40%. As with any new technology, farmers who
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TABLE 6 SAR and GLM probit model effect estimates for bush bean growers (M2)

Direct effect Indirect effect Total effect
Lower
.05 Coefficient

Upper
.95

Lower
.05 Coefficient

Upper
.95

Lower
.05 Coefficient

Upper
.95 NSP

Household size −.0185 .0015 .0220 −.0145 .0011 .0180 −.0335 .0026 .0390 .0000
Number of
children
under 5 years
old in HH

−.1014 −.0457 .0100 −.0828 −.0337 .0060 −.1767 −.0793 .0160 −.0500

Log (Household
head age)

−1.3881 .8601 3.1930 −1.0010 .6621 2.6190 −2.4401 1.5222 5.6960 .4500

(Log
(Household
head age))2

−.4323 −.1289 .1670 −.3589 −.0987 .1230 −.7663 −.2277 .2960 −.0800

HH average
years of
schooling

−.0140 .0076 .0280 −.0099 .0056 .0220 −.0239 .0132 .0490 .0100

Share of land
area with
legal title

−.0002 .0005 .0010 −.0001 .0004 .0010 −.0004 .0009 .0020 .0000

Management
index

.0726 .2295 .3860 .0427 .1671 .3110 .1236 .3966 .6590 .2700

Weighted plot
slope

−.0052 −.0007 .0040 −.0040 −.0005 .0020 −.0090 −.0012 .0060 .0001

Travel time to
extension
services >1 h

−.0037 .0054 .0150 −.0028 .0040 .0120 −.0064 .0094 .0260 .0100

already use other agricultural inputs, such as fertilizers or
manure, will use IBB varieties more frequently to increase
agricultural productivity. Household education level,
household size, and other variables were not significant.
Tables 5 and 7 summarize the SDM’s marginal effects

of bush bean growers. Of the nine explanatory variables
included in specification M1 (Table 5), five are statisti-
cally significant at the 5% level for the estimates of the
direct effect, which are “the number of economic active
males in HH,” “farming experience,” “the number of bean
varieties cultivated,” “IBB planting material from friends
or relatives,” and “travel time to extension services.” For
specificationM2 (Table 7), out of the seven included covari-
ates, three variables—management index, the number of
bean varieties, weighted plot slope, and access to exten-
sion services—are statistically significant at the 5% level
for both the direct and the estimates of the indirect effects.
The latter effect confirms the existence of spatial spillover
effects or peer effects. Proximity to extension centers for
smallholder farming households located >1 h away has a
positive direct effect of 4% and a spatial spillover effect
of 2%. This response is partially explained by the early
delivery strategy of reaching out to the most vulnerable
populations in remote rural areas, which have little to

no access to agricultural inputs, are less technologically
advanced, and are comparatively considered to be less
wealthy farming households. Extension services can help
guide farmers, particularly on the agricultural superior-
ity of improved varieties such as iron-biofortified ones,
strengthening farmers’ knowledge and experience on agri-
cultural best practices. Poorly functioning infrastructure
can affect the profitability of the technologies used by
farmers, and road networks (expansion and quality) and
mobile services are among the most important infras-
tructure conditions. In general, transportation limitations
tend to reduce competition between input suppliers and
intermediaries. Empirical evidence suggests that the travel
time between the farm gate and the market can be very
long, partly due to underdeveloped road infrastructure
(Raballand et al., 2010). Good transportation is associ-
ated with the dissemination of technology, better access
to inputs, and higher producer prices (Ahmed & Hossain,
1990; Dorosh et al., 2009).
The management index also exerts a positive direct

and indirect impact on the propensity of IBB adoption.
This suggests that we would observe increased adoption
rates on bean farmers that already use other agricultural
practices like irrigation, terracing, fertilizer, pesticides,
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TABLE 7 SDM probit model effect estimates for bush bean growers (M2)

Direct effect Indirect effect Total effect

Variables
Lower
.05 Coefficient

Upper
.95

Lower
.05 Coefficient

Upper
.95

Lower
.05 Coefficient

Upper
.95

Household size −.0193 .0003 .0200 −.0131 .0000 .0130 −.0316 .0003 .0330
Number of
children
under 5 years
old in HH

−.0952 −.0432 .0070 −.0693 −.0266 .0040 −.1593 −.0698 .0110

Log (Household
head age)

−1.2900 .8683 3.0640 −.7704 .5786 2.3080 −2.0067 1.4469 5.1810

(Log
(Household
head age))2

−.4201 −.1292 .1590 −.3108 −.0854 .0890 −.7110 −.2145 .2460

HH average
years of
schooling

−.0127 .0084 .0300 −.0082 .0052 .0200 −.0206 .0135 .0480

Share of land
area with
legal title

−.0003 .0004 .0010 −.0002 .0003 .0010 −.0006 .0007 .0020

Management
index

.0945 .2560 .4000 .0364 .1618 .3230 .1467 .4179 .7010

Weighted plot
slope

.0043 .0115 .0190 .0008 .0005 .0110 .0063 .0165 .0270

Travel time to
extension
services >1 h

.0029 .0388 .0750 .0014 .0247 .0580 .0049 .0635 .1280

manure, and/or compost. The indirect impact of man-
agement practices on nearby farmers is almost half of the
direct impact. It can be seen that compared with other
variables, the spatial spillover impact of the adoption
rate is very large. Using the interaction between the
management practice index and the number of bean
varieties grown at the household level, we discovered the
synergistic use of modern agricultural inputs.
We use the slope of the cultivated land as an indicator of

soil quality. Plots’ steepness positively affects the propen-
sity of IBB adoption, with a positive direct and indirect
impact of increasing IBB adoption. Empirical evidence in
Rwanda shows that smallholder farming households that
grew beans on steep terrains witness an increase in crop
productivity as well as a decrease in soil erosion (Katungi
et al., 2019). A potential explanation for this pattern
might be the nitrogen-fixing ability of the common bean
(P. vulgaris). Beans can obtain a part of the nitrogen they
need from the atmosphere through symbiotic nitrogen
fixation (Barbosa et al., 2018).
Figure E1 (see Appendix E) shows the point estimate

of village-level random effects. The values of the point
estimates change from one village to its neighbors, rang-
ing from .2 to .8 with a higher prevalence of villages with

negative point estimates. However, we can observe a few
clusters of villages in the Eastern, Kigali, and Southern
regions that have positive point estimates, which increase
the likelihood of adoption and geographic spread of IBB
bush varieties across these clusters of villages. As this
analysis shows, random effects are a useful indicator of
the degree of spatial heterogeneity of smallholder farming
households in Rwanda.

3.3 Climbing bean analyses

Scenario 1 for climbing bean adopters shows a different
spatial pattern (Table 3). Contrary to IBB bush adopters,
the propensity of adoption of IBB climbing varieties
increases with household wealth and risk-taking house-
holds or households with less farming experience. In the
SDM, the direct and indirect effects turned statistically
significant at the 5% level (Table 9) for four covariates:
household wealth, the number of bean varieties cultivated,
years of farming experience, and IBB planting mate-
rial received from friends or relatives. The largest total
marginal effect was associated with IBB planting material
from friends or relatives followed by the householdwealth,
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TABLE 8 SAR and GLM probit model effect estimates for climbing bean growers (M1)

Direct effect Indirect effect Total effect

Variables
Lower
.05 Coefficient

Upper
.95

Lower
.05 Coefficient

Upper
.95

Lower
.05 Coefficient

Upper
.95 NSP

Number of
economic
active males
in HH

−.0076 .0130 .0340 −.0033 .0061 .0170 −.0110 .0191 .0520 .0100

Number of
children
under 5 years
old in HH

−.0366 −.0014 .0330 −.0188 −.0009 .0150 −.0550 −.0022 .0470 .0000

Log (Household
head age)

−1.7880 −.1710 1.4900 −.8426 −.0855 .6800 −2.5790 −.2565 2.1010 −.1300

(Log
(Household
head age))2

−.1752 .0433 .2600 −.0811 .0210 .1270 −.2585 .0643 .3730 .0400

Wealth Index .0548 .2222 .3890 .0216 .1037 .2100 .0799 .3259 .5820 .2500
Number of
varieties
cultivated

.0361 .0493 .0610 .0106 .0232 .0370 .0518 .0725 .0930 .0500

Farming
experience
(years)

−.0142 −.0078 −.0020 −.0080 −.0037 −.0010 −.0215 −.0116 −.0030 −.0100

Land labor ratio
(m2/person)

−.0001 .0000 .0000 .0000 .0000 .0000 −.0001 .0000 .0000 .0000

Travel time to
extension
services >1 h

−.0052 .0019 .0090 −.0022 .0009 .0050 −.0074 .0028 .0140 .0000

Planting
material from
friends or
relatives

1.5060 2.0900 2.6480 .4906 .9590 1.4270 2.3490 3.0490 3.7960 6.3600

which increased the probability of adoption by 25%, the
number of bean varieties grown by the household, which
increased the propensity of adoption by 5%. In response to
the risks associated with crop failure and food insecurity,
bean farmers grow more than one bean variety.
In scenario M2, four variables turned statistically sig-

nificant at the 5% level: management practices, household
size, household education level, and plot slope (Table 10).
The size of the household has a positive effect on the
propensity to adopt IBB, with a positive direct impact
of increasing adoption by 2% for an additional member
in the household. Larger households have the capac-
ity to increase the labor availability required with the
adoption of a new variety, such as IBB, while household
education level had a direct impact of increasing the like-
lihood of adoption by 3%. Most notably, the results suggest
that the average education level of household members
(rather than the education level of the head of house-

hold) influences the adoption of new technology, and it
is positively correlated with wealth. Farmers with higher
levels of education are wealthier, therefore the education-
adoption relationship may represent the income effect
(Jolliffe, 2002). Also, as it was reported in the descriptive
statistics, wealth may be correlated with the scale of oper-
ation, as adopters tend to manage more and larger plots.
Analogous to bush bean growers, steep terrain can affect
the adoption of IBB. In Rwanda, climbing bean produc-
tion is more likely at higher elevations where smallholder
farming households farm on steep slopes. Climbing beans
is considered as a potential solution to increase agricultural
productivity and soil sustainability (Katungi et al., 2019).
Tables 8 to 11 summarize the observed values of the

estimates of the marginal effects for specifications M1 and
M2 of the SAR and SDM models for climbing bean grow-
ers. Out of the nine covariates of the SDM model effect
for specification M1 (Table 9), only four covariates are
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TABLE 9 SDM probit model effect estimates for climbing bean growers (M1)

Direct effect Indirect effect Total effect

Variables
Lower
.05 Coefficient

Upper
.95

Lower
.05 Coefficient

Upper
.95

Lower
.05 Coefficient

Upper
.95

Number of
economic
active males
in HH

−.0126 .0101 .032 −.0052 .0042 .016 −.0181 .0144 .046

Number of
children
under 5 years
old in HH

−.0356 .0017 .036 −.0144 .0007 .016 −.0478 .0024 .052

Log (Household
head age)

−1.6920 −.0686 1.587 −.7542 −.0147 .729 −2.3270 −.0833 2.303

(Log
(Household
head age))2

−.1862 .028 .243 −.0873 .0099 .105 −.2726 .0378 .34

Wealth Index .0966 .2508 .414 .0223 .1062 .231 .1296 .357 .619
Number of
varieties
cultivated

.0368 .0507 .064 .0079 .0212 .039 .0494 .0719 .096

Farming
experience
(years)

−.0140 −.0083 −.0030 −.0071 −.0034 −.0010 −.0197 −.0116 −.0040

Land labor ratio
(m2/person)

−.0001 0 0 0 0 0 −.0001 0 0

Travel time to
extension
services >1 h

−.0228 .0046 .031 −.0088 .0022 .015 −.0310 .0068 .045

Planting
material from
friends or
relatives

1.514 2.524 3.66 .4232 .9989 1.609 2.24 3.523 4.733

statistically significant at the 5% level: farming experience,
the number of bean varieties cultivated, the wealth index,
and IBB planting material from friends or relatives. The
positive direct effect of the number of bean varieties
cultivated and planting material from friends or relatives
suggests that higher values of these variables for bean
growing household i lead to an increase in the propensity
of adoption of IBB climbing varieties. Farming experience
shows that there is a negative direct impact, which indi-
cates that household heads with less farming experience
are more likely to adopt IBB climbing varieties. Contrary
to IBB bush growers, novice climbing bean growers are
more likely to change their seed use, which will have
a positive spillover effect on neighboring farmers. This
finding is consistent with the previous literature, that is,
novice farmers are more inclined to adjust the level of
input (Conley & Udry, 2010). The increase in agricultural
experience reduces the tendency to respond to new infor-
mation related to agricultural technology. This difference

in the relationship between IBB adoption and farming
experience between bush and climbing varieties might be
related to the fact that climbing bean varieties are rela-
tively newer than bush bean varieties (Katungi et al., 2019).
Recent evidence shows that there is a significant inverted
U relationship between the adoption of agricultural
technology and agricultural experience (Ainembabazi &
Mugisha, 2014). In a study investigating the determinants
of the adoption of improved technology and production
practices in Nepal, Kumar et al. (2020) reported that
longer farming experience was negatively correlated with
the adoption rate of agricultural technology. The socioeco-
nomic characteristics of neighboring bean farmers, such
as their household size and education level, have a positive
spatial spillover effect on the adoption rate of IBB. The
greater themagnitude of the estimated parameters of these
covariates, the greater the tendency to adopt IBB climbing
varieties. For specification M2 (Table 11), out of the seven
included covariates, four variables—management index,
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TABLE 10 SAR and GLM probit model effects estimates for climbing

Direct effect Indirect effect Total effect
Lower
.05 Coefficient

Upper
.95

Lower
.05 Coefficient

Upper
.95 Lower .05 Coefficient

Upper
.95 NSP

Household size .0049 .0208 .0370 .0023 .0147 .0300 .0076 .0355 .0650 .0200
Number of
children
under 5 years
old in HH

−.0454 .0018 .0480 −.0326 .0015 .0370 −.0770 .0033 .0830 .0000

Log (Household
head age)

−1.3024 .6107 2.5070 −.8752 .4333 1.9360 −2.1882 1.0440 4.3230 .5300

(Log
(Household
head age)) 2

−.3257 −.0770 .1720 −.2498 −.0545 .1180 −.5594 −.1314 .2890 −.0700

HH average
years of
schooling

.0135 .0280 .0440 .0064 .0198 .0360 .0221 .0478 .0770 .0300

Share of land
area with
legal title

−.0011 −.0004 .0000 −.0008 −.0003 .0000 −.0019 −.0007 .0010 .0000

Management
Index

.0153 .1454 .2800 .0093 .1022 .2150 .0241 .2476 .4830 .1700

Weighted plot
slope

−.0061 −.0028 .0000 −.0051 −.0020 .0000 −.0106 −.0048 .0000 −.0027

Travel time to
extension
services >1 h

−.0108 −.0023 .0060 −.0078 −.0015 .0040 −.0182 −.0038 .0110 .0000

the slope of farming plots, household size, and household
average years of schooling—are statistically significant at
the 5% level for both the direct and the estimates of the
indirect effect. In contrast to IBB bush varieties, the last
two covariates are not statistically significant.
The national adoption rate of IBB varieties was 28%. To

better understand patterns of IBB adoption at the subna-
tional level, Figure 1 contains a choropleth map of the
prevalence rates of IBB adoption by bean types at the
district level. From this map, we highlight two spatial
patterns. First, from the choropleth map, it is clear that
the rates of adoption for IBB bush varieties are higher in
the Eastern region and gradually decreasing toward the
Central, Southern, andWestern regions. IBB climbing vari-
eties, on the other hand, have higher rates of IBB adoption
in the Western and Northern regions. IBB bush varieties
are more likely to be adopted in the central and southern
regions.
Figure E2 (see Appendix E) shows the point esti-

mates of the village-level random effect of IBB climbing
growers. The values of the point estimates range from
-1 to 1 with a higher prevalence of villages with point esti-
mates that range between -1 and 0. The spatial footprint
of villages with positive point estimates is more frequent

in the Southern, Western, Northern regions as well as
the southern part of the Eastern region. Villages in these
regions are more likely to adopt IBB climbing varieties.
Figure E2 (see Appendix E) also illustrates the case of
the distance-decay correlation across villages. In addi-
tion to within-village correlation, a spatial model assumes
that the strength of spatial correlation between two vil-
lages declines as the distance between them increases,
resulting in similar mean levels of outcomes among
nearby villages and thus clusters of villages with similar
outcomes.

4 CONCLUSIONS

This article contributes to the literature on technology
adoption in two ways. First, it provides a national and
a subnational analysis on the intensity of adoption and
adoption rates of IBB by type: bush and climbing. Second,
the article examines, with the assistance of spatial econo-
metrics techniques and theories of social interaction, and
choice behavior, how household and farm level charac-
teristics, as well as regional factors, influence smallholder
farmers’ decisions to grow IBB. We used a cross-sectional
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TABLE 11 SDM probit model effect estimates for climbing bean growers (M2)

Direct effect Indirect effect Total effect

Variables
Lower
.05 Coefficient

Upper
.95

Lower
.05 Coefficient

Upper
.95

Lower
.05 Coefficient

Upper
.95

Household size .0040 .0216 .0390 .0023 .0143 .0300 .0069 .0360 .0660
Number of
children
under 5 years
old in HH

−.0350 .0132 .0600 −.0241 .0088 .0440 −.0595 .0220 .1000

Log (Household
head age)

−1.4887 .4314 2.3560 −.9581 .3192 1.8200 −2.3999 .7505 4.1490

(Log
(Household
head age))2

−.3065 −.0530 .1990 −.2364 −.0394 .1270 −.5366 −.0925 .3260

HH average
years of
schooling

.0131 .0288 .0440 .0064 .0193 .0370 .0216 .0481 .0760

Share of land
area with
legal title

−.0010 −.0003 .0000 −.0007 −.0002 .0000 −.0016 −.0004 .0010

Management
Index

.0118 .1479 .2940 .0062 .0995 .2260 .0194 .2474 .4950

Weighted plot
slope

.0007 .0061 .0120 .0002 .0041 .0100 .0011 .0103 .0200

Travel time to
extension
services >1 h

−.0309 .0008 .0340 −.0208 .0009 .0240 −.0496 .0017 .0550

F IGURE 1 Choropleth map: prevalence rate of IBB adoption, by district

nationally representative survey of bean producing
households on bean varieties grown in 2015 season B in
Rwanda. We employed two SP specifications, SAR model,
and SDM, to empirically assess the interdependence of
farmers’ decisions to adopt IBB. The robustness of our

results was tested by setting a simple social grouping
where smallholder farmers are nested within villages.
This multilevel fixed model with random effect (at the
village level) revealed spatial clustering across villages
with similar outcomes by bean type.
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The tabular analysis of the data shows that local bean
varieties still dominate the area under bean cultivation, fol-
lowed by improved and IBB varieties, respectively. Given
that IBB varieties were only released 3–5 years prior to the
time of the survey, 11% coverage figure indicates the inten-
sity of adoption of IBB, suggesting early stages within a
long-run S-shaped adoption curve. Our spatial economet-
ric results indicate interdependence on farmers’ decisions
to adopt IBB. In addition to the directly targeted benefi-
ciaries, the parameter ρ suggests that the biofortification
program affected nonbeneficiaries as well. This finding
indicates that (1) a bean growing farm household is more
likely to grow IBB if the household is near other early
IBB adopters who communicated on the nutritional and
yield advantages of IBB technology, and (2) the tendency
of households to grow IBB varies according to the charac-
teristics of the neighboring farmers. A NSP model could
not have measured this spatial association as an indicator
of the interaction of farmers in a social network.
Structural factors are the main direct and indirect deter-

minants for predicting the likelihood of adoption of IBB
varieties. For IBB bush variety growers, these factors
include the number of economically active male members
in a household and farm management practices. In abso-
lute terms, the largest total marginal effect is management
practices. For IBB climbing variety growers, household size
and education level had the highest direct and an indi-
rect effect on the adoption of IBB. Common factors that
influence the adoption of both climbing and bush IBB vari-
eties included the number of years of farming experience
and the number of varieties cultivated. Farming experience
had a negative direct impact, as well as a negative spatial
spillover on the household’s propensity to adopt IBB climb-
ing varieties. In contrast, years of farming experience had a
positive direct impact on the adoption of bush IBB varieties
and a positive spatial spillover. The second common factor
that influenced the adoption of IBB varieties is the number
of bean varieties cultivated. We observed a positive direct
effect associated with the number of varieties cultivated,
suggesting that a higher value of this variable leads to an
increase in the propensity to adopt IBB varieties by the
household. We considered the variable planting material
sourced from friends or relatives of a smallholder farmer
as a covariate. For growers of both bush and climbing IBB
varieties, the coefficient of this covariate is positive and sig-
nificant, which further supports the positive role of social
interaction in technology diffusion.
Some general policy implications can be drawn from the

initial above results. First, drafting differentiated geolo-
cation strategies for bush and climbing beans based on
the characteristics of farmers and farms may increase the
adoption rate of the most vulnerable groups in rural areas.
Second, given that education increases the propensity

to adopt climbing IBB varieties, increasing training and
extension on the nutritional and agronomic benefits of IBB
might be an effective policy to stimulate the diffusion of
this technology. Finally, technology-promotion programs
that consider progressive farmers and strengthen social
interactions and group activities among peer networks are
expected to increase the spread of information and geo-
graphical diffusion of IBB varieties. Overall, in terms of
policy implications, this study highlights the important
role of social interactions as a cost- effective delivery strat-
egy for diffusion of new technologies, such as IBB. In terms
of methodological innovations, this study highlights the
important role spatial econometric techniques can play in
conducting program evaluations, especially regarding the
impact of a program on unintended beneficiaries.
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