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ABSTRACT

This thesis reviews the role of fire, and especially its
seasonal timing, in the moist sava;ma forests of mainland Southeast Asia,
and, in particular, of Thailand. Based on one year’s experimental field
work carried out in Uthai-thani Province, West Thailand, the thesis
investigates the development of conditions for burning and fire behaviour
throughout the dry season. Spatial patterns of fire temperature and the
duration of maximum temperature are measured, along with a wide range of
other key variables, such as fireline intensity and speed of fire spread.

The climatic preparation of fuels for ignition is also examined.

It is argued that fire is endemic in this formation, although
its character has changed much over time. Conditions for burning were found
to be optimal in March (the late dry season), when fire occurrence and
behaviour measurements were at their peak. Two ground cover fuel-fire
regimes are recognized: 1) heterogenecous ground cover, with a high
proportion of non-grass species, producing patchy, low temperature burns
(£ 650°C), except where conditions are very favourable, as in the late dry
season; 2) homogeneous grass cover, notably of Heteropogon triticeus
(R.Br.) Stapf.ex Craib, which tends to burn evenly, and extensively, with
a high temperature (750-900°C) and speed of spread (0.6-3.0 cm s'l) y When
the grass stalks have collapsed after the arrival of the Northeast monsoon
{early February — mid dry season). As in African moist savannas, short-term
recovery shows a tendency for low temperature burns on partially dry grass

to favour woody species, while discouraging grass growth.

It is suggested that fire timing and placement can be used as
an effective tool in ecological management, to: 1) prevent the extensive
occurrence of destructive wildfires; 2) meet a range of different planning
objectives. It is further argued that, since the fire ecology is local, the
management pattern must also be devised locally. A change from central
state control of policy is thus proposed.

Key Words: fire ecology, fire timing, phenology, fire management, savanna
forest, Thailand, Southeast Asia.
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CHAPTER 1.
THE ROILLE OF FIRE IN SAVANNAS
"The (savanna) forest changes with the seasons. At times it gets dense and
untidy, and at times it gets trimmed (by fire). It sleeps, then it awakes.
The forest is not dead all the time."
A Karen villager of Ban Klong Salao,

Uthai-thani province, West Thailand.
(pers.comm., December 1987)

1.1 Introduction

Although present evidence is not sufficient to determine
precisely when terrestrial fire first occurred, wildfire is likely to
have been a common phenomenon ever since the early build-up of land plant
biomass some 350-400 million years ago (Komarek 1968, Harris 1972, Gillon
1983, Patterson & Backman 1988, Schiile 1990). Fire has thus played an
integral part in the shaping of terrestrial ecosystems, and there is
hardly a vegetation type in which fire has not had an influence.

Even parts of the moist lowland tropical evergreen rain
forest, which was once thought to have evolved steadily without disturb-
ances {e.g. Ashton 1969), is now known to burn, albeit with low frequency,
particularly when rare climatic events trigger favourable conditions for
fire ignition and spread. This has recently been seen in Indonesia when
the El Nifio Southern Oscillation, a phenomenon caused by an irregular
warming of the usually cool surface of the eastern equatorial Pacific
ocean (Whitmore 1990), induced prolonged drought in 1982-83, 1986 and
1991. The burning was made particularly drastic through poor human
management of extensive swiddens and logging operations, which created
large areas of secondary forest and produced high fuel loads. Certain
special conditions can also induce fire in tropical rain forest, such as
the presence of extensive underground coal seams in East Kalimantan, which
have continued to smoulder since their first ignition in 1983 and 1986
(Poole 1991).

Fire burns when there are sufficient relative amounts of heat,
oxygen and fuel. The inter~dependent relationship of these three factors
to produce combustion is commonly known as the ‘triangle of fire' (e.g.
Hirst, date unknown; Fig.l.1). In the case of forest fuel, the solid
surface is usually converted by heat radiation into gases, which then
react with oxygen to produce flame. When all the volatiles are burned, the
solid is left as charcoal, which glows as its surface is hot enough to
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react directly with oxygen. The reaction can continue as long as adequate
heat is available for fresh fuel and oxygen to become sufficiently hot.

OXYGEN

Figure 1.1. The fire triangle.

Climate, therefore, controls fire in several ways. First,
temperature and precipitation largely determine the productivity of
vegetation, and hence the amount of potential fuel available. Secondly,
climate regulates the moisture content of this fuel, which in turn
controls its ignitabilityl and the sustainability of the burn. Finally,
climate influences independently the conditions for ignition and the
spread of fire, there being a minimum temperature and maximum relative
humidity that can support burns in various habitats.

Within this overall climatic control, however, fire may itself
influence the vegetation as a control on future fuel characteristics. One
fire will influence the next fire, and so on. Thus, while vegetation
productivity, fuel burning properties, and the distribution of fuel
together determine particular fire characteristics, the spatial pattern
of fire, its frequency and intensity, equally combine to create a fire
regime which plays a distinct role in the re-creation of the vegetation
formation after fire. These basic principles concerning the ecological
role of fire will be established in this introductory chapter, before
embarking on a discussion of the role of fire in savanns ecosystems, in
particular a study of the significance of the seasonal timing of fire.
This is the main context for the work discussed in the present thesis.

1.2 The ecological significance of fire

The main principles of general fire ecology have already been
well summarized by Chandler et al (1983), among others (e.g. Davis 1959,
Kozlowski & Ahlgren 1974, Wright & Bailey 1982). It can be said, briefly,
that, in any given ecosystem, fire acts chiefly as a selective agent, a

consumer and a decomposer. Over the course of plant evolution, recurring

! Terms appearing in bold are defined in Glossary (p.265).
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fire has selected species with adaptive traits that enable them to
succeed after fire. These traits are not necessarily adaptations
specifically for fire regimes, but are more likely to be adaptations to
a number of disturbances and constraints which a plant faces in its
environment, notably drought, which itself induces conditions for fire,
and which imposes similar stresses on living plant tissue. A plant may
be adapted to fire physiognomically (morphologically), physiologically,
or phenologically, or any combination of these three.

A range of survival strategies appear to depend on the number
of fire events an individual plant is expected to experience within its
life oycle {(Chandler et al 1983). If fire occurs once, it is only
important to ensure successful reproduction of the species, death of the
parent being of no consequence. A good example is Jjack pine (Pinus
banksiana Lamb 2) with its serotineous cone'. On the other hand, some
protective means to withstand fire is crucial if a plant is to survive
recurring fire events throughout its life time. Thus, fire-tolerant trees
and shrubs commonly have thick bark to insulate their cambium layers
against lethal heat. Their buds are often protected in various ways, such
as by being covered with dense layers of foliage, or by being buried deep
within branch axils, or again by being located on the underground roots,
which can sprout after the removal of above-ground  parts. Similar
strategies characterize the geophytes, in which perennating organs are
protected underground in a dormant state during the drought and fire
season. The effectiveness of scil as a heat insulator will depend largely
on the depth and amount of organic matter content (Stott 1986).

Fire can further induce flowering, increase seed liberation,
and stimulate seed germination. The timing of seed release in relation to
a fire event is also important. For instance, it is advantageous for
hard-cased seeds, or serotineous fruits, to drop before the fire, which
cracks the seed case or melts the waxy coating to release seeds for
germination (e.g. Pinus banksiana). In contrast, plants with susceptible
seeds must drop them after fire and germinate quickly on the burned
ground. Annual seeds, which are released at the end of the growing season,

are often burned, unless they are buried underground before a fire

occurrence.,

z The nomenclatural authority is given when a species name appears for
the first time in the text, and in Appendix I (p.266).

3 Cones sealed with wax preventing seeds from being released until the
wax melts.
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The spatial pattern of fire, its frequency, its intensity, and
its timing, therefore, help to select a2 community of plants which are
adapted to suit the overall fire regime of that particular habitat. For
example, in the montane-boreal coniferous forest of the Daxinganling
Mountain region in Northeastern China, short return interval fires of
low-medium fireline intensity occurring early in stand succession, after
it has been destroyed by severe fire or cutting, will favour a pure stand
of birch and aspen, the domination of which are maintained until a long
fire-free period allows for the development of coniferous species, such
as larch, which generates under the canopy of the pioneer species.
Subsequently, medium-return interval fires will maintain a mixed stand by
creating gaps that do not allow birch and aspen to be out-competed by
larch {(Goldammer & Xueying Di 1990). Fire characteristics then vary with
component species. For instance, where crown fires tend to occur mostly
on coniferous trees, it is a rare phenomenon in forest stands dominated
by broad-leaved hard wocods, as seen 1in North American temperate forests
{Chandler et al 1983). This is a good example of how vegetation influences
fire characteristics.

Fire can thus change vegetation structures or maintein them,
depending on the overall adaptive nature of the formation to a particular
fire regime. In the case where mature trees and tall shrubs are well-adap-
ted to withstand fire, a key variable in the structural dynamic will be
the survival of seedlings. This is a stage in plant life when plants are
particularly susceptible to fire, and it is common for fire-prone plants
to bear and germinate large quantities of seeds which increases their
chances of survival, the rate of which depends significantly on the fire
intensity and the patchiness of the burn. Above all, it depends on fire
frequency and on the nature of the fire-free interval, which allows
seedlings to mature. When the number of seedlings surviving is in
equilibrium with the number of mature plants being displaced, overall
community physiognomy will be maintained. However, in many edaphically
determined formations, fire exclusion may not lead to changes in
vegetation structure, as is seen in many savanna commmities (e.g.
Barrington 1931, Belsky 1990).

As fire consumes, it reduces organic plant biomass into
available nutrients in the form of ash, high in basic ions, which tends
to raise the pH wvalue of acid soils. Some  proportions of calcium,
potassium and magnesium are transported away as fine particles, while
nitrogen, phosphorus and sulphur are lost as gases to the atmosphere. Fire

also has effects on the physical properties of soils, particularly where
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there is a high percentage of clay particles which may fuse to become more
compact and less  porous. The extent of soil physical and chemical
conversion depends on the intensity and temperature of fire.

Giovannini et al (1990) experimented on the effect of heating
on the quality of some Italian soils, and found that solubility of various
cations beneficial to plant growth is promoted by low temperatures of
{220°C. The combustion of soil organic matter takes place between
220-460°C, while temperatures of >460°C causes damage to the crystallo-
graphic and spatial structure of soil mineral parts. Unlike organic
matter content which can be replenished, soil structure, once changed,
cannot be restored.

However, it is possible that unless soils contain a high
amount of organic matter or clay particles, a burn, on the whole, probably
does not alter too significantly the chemical and physical properties of
the soil., If erosion is not taken into account, a burn on sandy soils,
poor in organic matter, tends to redistribute nutrients in an ecosystem
to the surface and the upper soil layer, rather than decreasing them,
provided that most of the soluble nutrients are taken up by plants before
they are lost through leaching. So, in the long run, soil status is
generally maintained. However, the effects of burns on soil properties
and nutrient cycling will vary markedly from site to site, and between
different elements, depending on such factors as fire intensity, soil

characteristics and topography, soil micro-organisms, the amount and timing

of precipitation received after fire, how soon recovery takes place, and’

the rate and efficiency of plants exploiting the nutrients released.

When vegetation burng, it further emits greenhouse gases, like
carbon dioxide (007.) , methane (CH4) and di-nitrogen oxide (NZO) . Although
the current extent of the wildfire contribution towards the so-called
‘greenhouse’ effect is as yet unclear, it is likely to be significant
(Newell et al 1989, Wei Min Hao et al 1990). This brings the interaction
between climate, fuel and fire to a closed triangle. Fire, however,
influences climatic change in more than one way. At the local level, the
change in vegetation structure and the blackened colour of burned ground
{(the albedo) have direct effects on the micro-climate.

The extent of the significance of fire thus varies in different
ecosystems. Table 1.1 presents a range of fire regimes in some of the

world’s major vegetation types, including the tropical savannas.
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1.3 Fire and savannas
1.3.1 Savannas defined

The term ‘savanna’ has been a cause of much dispute and

confusion (e.g. Bourliére & Hadley 1983,

forests to near deserts, from within the tropics to all global climatic

Huntley & Walker 1982).
Originating from the language of the Arawak Indians of
Antilles islands in the Caribbean (Blydenstein 1969, Harris 1980), where
it is used to describe 'land without trees, but with much grass, short,
and tall’ (Oviedo y Valdes 1535, cited after Bourliére 1983), the term has
since been applied to a wide range of vegetation types from near closed

zones.
Sarmiento (1984) has divided the different uses of the
ECOSYSTEM FIRE FREQUENCY FIRE TYPE
(years)
Tundra rare Surface fire
Taiga & boreal forests
1. moist 200-250 From underground

[

2. dry 40-65 to crown burns
Temperate forests Surface fire; crown
{North America) burns are rarex,
1. northern limit 10-25 but recently

2. southern limit 2-5 more COmmon.
Mediterranean

shrubland 15-100 *Bush’ crown fire
Temperate grasslands

1. steppe (Mongolia) annual Surface fire

2. prairies(N.America) 1-6

Tropical savannas

1. moist 1-2 Surface fire; crown
2. dry 10-50 [ burns are rare.
Semi-deserts & Deserts rare Surface fire
Tropical rain forests rare From underground

[

to crown burns

1.
2.

¥ usually occurs on coniferous trees

sources
Lacey et al (1982)

Chandler et al (1983)

Table 1.1. Fire type and frequency in some world ecosystems.
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