Unknowns, Black Swans and the risk / uncertainty distinction

Phil Faulkner, Alberto Feduzi and Jochen Runde*

(to appear in the *Cambridge Journal of Economics*)

Tony Lawson’s work on probability and uncertainty is both an important contribution to the heterodox canon as well as a notable early strand of his ongoing enquiry into the nature of social reality. In keeping with most mainstream and heterodox discussions of uncertainty in economics, however, Lawson focuses on situations in which the objects of uncertainty are imagined and can be stated in a way that, potentially at least, allows them to be the subject of probability judgments. This focus results in a relative neglect of the kind of uncertainties that flow from the existence of possibilities that do not even enter the imagination and which are therefore ruled out as the subject of probability judgments. This paper explores uncertainties of the latter kind, starting with and building on Donald Rumsfeld’s famous observations about known unknowns and unknown unknowns. Various connections are developed, first with Nassim Taleb’s Black Swan, and then with Lawson’s Keynes-inspired interpretation of uncertainty.

Key words: Unknowns, Black Swans, Risk, Uncertainty, Rumsfeld, Taleb, Keynes, Knight, Lawson

JEL classifications: B21, D81

1. Introduction

Over the course of the second half of the 1980s Tony Lawson published a series of papers on probability and uncertainty (Lawson 1985, 1987, 1988). Written against the backdrop of the rational expectations revolution in macroeconomics, and drawing heavily on the writings of J.M. Keynes’s (1921, 1936, 1937) and research then being conducted in Cambridge on the connections between Keynes’s earlier work on probability and his later work in economics (subsequently published as Carabelli, 1988; Meeks, 2003 and O’Donnell, 1989), one of their principal aims was to restore and provide philosophical foundations for a conception of uncertainty not reducible to numerically definite probabilities. The papers were widely cited and went on to become part of the canon of heterodox approaches in economics that emphasize the
distinction between situations of risk, in which numerical probabilities can be
determined, and situations of uncertainty, in which they cannot.

Influential as these papers were, there is an important form of uncertainty that
they did not directly examine, namely that which arises in the face of eventualities that
are not even imagined as possibilities before being revealed. Although an old and
familiar part of the human condition, uncertainty of this kind has recently been
attracting attention in the wake of a slew of financial crises, industrial accidents,
technological shifts and political developments that, while anticipated as possibilities
by a few, were apparently unforeseen by most before they occurred. Two ideas are
currently enjoying considerable currency in this connection, so much so that they have
entered the popular lexicon. The first is the distinction between known unknowns and
unknown unknowns, already familiar in engineering circles in the 1950s (Wideman,
1992), but which became famous following its use by the then US Secretary of
Defense, Donald Rumsfeld, during a Pentagon news briefing in February 2002 (and
also subsequently, for example Rumsfeld (2002b, 2011)):

> Reports that say that something hasn't happened are always interesting to
me, because as we know, there are known knowns; there are things we
know we know. We also know there are known unknowns; that is to say
we know there are some things we do not know. But there are also
unknown unknowns – the ones we don't know we don't know (Rumsfeld,
2002a).

The second is the Black Swan, popularized by Nassim Taleb’s (2007) best-selling
book of the same name. Black Swan is Taleb’s term for an event characterized by
three attributes:

> First, it is an outlier, as it lies outside of the realm of regular expectations,
because nothing in the past can convincingly point to its possibility.
> Second, it carries an extreme impact (unlike the bird). Third, in spite of its
outlier status, human nature makes us concoct explanations for its
occurrence after the fact, making it explainable and predictable (Taleb,

Both Rumsfeld and Taleb have their critics, not least Rumsfeld whose remarks
won the Plain English Campaign’s “Foot in Mouth” award in 2003 for the most
baffling remark made by a public figure. But there is little doubt that they are onto something, and a good deal has now been written on known and unknown unknowns and Black Swans, both individually and in tandem, across disciplines including economics and finance (Barberis, 2013), operations management and management science (Pich, Loch & De Meyer, 2002), probability and statistics (Chichilnisky, 2010), decision theory (de Palma et al., 2014), applied psychology (Feduzi & Runde, 2014), security studies (Mitzen & Schweller, 2011), ecology and environmental studies (Wintle, Runge & Bekessy, 2010), political science (Blyth, 2010) and sociology (Beck, 2006). There are also many contributions that explore similar ideas under different headings such as unforeseen contingencies (Kreps, 1992), unawareness (Modica & Rustichini, 1994) and unknowledge (Shackle, 1979, 1983) in economics, the small worlds problem in decision theory (Binmore, 2009; Savage, 1954), state space uncertainty in philosophy (Bradley & Drechsler, 2014), post decision surprises and bolts from the blue in management and organization theory (March, 1994; Weick & Sutcliffe, 2007), and Knightian uncertainty or ignorance in entrepreneurship (Kirzner, 1979; Sull, 2004).

Our aim in the present paper is to explore uncertainty of the kind featured in this literature, and then to investigate how this may relate to Tony Lawson’s Keynes-inspired writings on uncertainty. The first part of this project involves a certain amount of conceptual groundwork, beginning with a systematization of Rumsfeld’s categories, which we subsequently build on to arrive at a formulation of what we call an individual’s subjective space of possibilities. We then use this framework in two ways, first, to comment on the relationship between Rumsfeld’s unknowns and Taleb’s Black Swan, and second, to examine how these ideas fit with those in Lawson’s work on probability and uncertainty.¹

2. Rumsfeld’s categories

To understand what Rumsfeld has in mind with the distinction between known unknowns and unknown unknowns it is helpful to begin with the more fundamental distinction he draws between knowns and unknowns. According to Rumsfeld knowns

¹ The interpretation of Rumsfeld’s categories explored in the current paper differs from that which appears in Feduzi & Runde (2014) and Runde (2009, p. 495). While the underlying intuitions and ontologies largely coincide, the points of departure and labels differ. In particular, while the term unknowns is used as a synonym for gaps in knowledge in the present paper, it is associated with possible eventualities (which may or may not be known) in the earlier contributions.
are those “things…we know”, while unknowns are those “things we do not know” (Rumsfeld, 2002a) or, equivalently, “gaps in our knowledge” (Rumsfeld, 2011, xiv).

The basic idea here—that at any point in time there are some things that are known and some things that are not known to an individual—is unobjectionable. Yet beyond giving examples of the kinds of things that may be knowns or unknowns, such as the role of gravity in making objects fall or the extent of a country’s nuclear weapons program (Rumsfeld, 2011, xiv), Rumsfeld provides little in the way of further elaboration of these two categories. In particular, he sidesteps difficult philosophical questions regarding the nature of knowledge, details that need addressing to flesh out the meaning of knowns and unknowns.

Rumsfeld’s examples indicate that when he talks of a person knowing or not knowing something it is generally factive knowledge, particularly descriptive or propositional knowledge, that he has in mind. Such knowledge concerns what we will call features of the world, by which we mean facts about past, present and future reality, including the existence, properties and so forth of any (kind of) entity (ranging from animate and inanimate objects, to ideas, theories, opinions and the like), event or state of affairs. Examples of things that may be knowns or unknowns to an individual thus range from quite broad or abstract features of the world such as the regulations that currently govern company mergers within a particular jurisdiction, the extent of Iran’s existing nuclear weapons program or the state of academic Economics in thirty years’ time, to much more specific features such as the closing level of the Dow Jones Industrial Average (DJIA) on January 10 2017, the existence of a group of individuals intending to hijack commercial airliners and employ them as weapons or the winner of the next FIFA World Cup.

Perhaps the most difficult issue Rumsfeld leaves unexamined is what it means for an individual to possess knowledge of this kind. On the standard view in Epistemology an individual is deemed to have such knowledge if they possess beliefs about some feature of the world and where those beliefs are both true and justified. We will accept this account for the purposes of what follows, subject to a few

2 We restrict our analysis in the present paper to the individual, rather than also considering how these terms might be used in relation to the knowledge that a group or community might be said to possess. In his own use of these terms it is not clear whether Rumsfeld also has such shared knowledge in mind, although some of his examples certainly lend themselves to this reading, as when he discusses what the intelligence community may or may not know.
Truth is relevant in the present context since beliefs that are plainly false cannot constitute knowledge of some feature of the world. But this does beg the question of just how accurate an individual’s beliefs must be to count as knowledge. Evidently our beliefs rarely correspond to the world in a simple one-to-one way, and are often significantly affected by our individual attitudes, interests and ways of seeing things. And even where they are accurate in some respects, they are usually partial and often fragmentary. There is no easy way around these complications. If we set the standard for what counts as knowledge too high, we exclude many of the beliefs that serve us well in our decision making. If we set the standard too low we run the risk of including beliefs that verge on the plain false.

Justification is relevant in this context because truth alone is insufficient for beliefs to be considered knowledge. In addition, to rule out beliefs that, while true, are the product of invalid reasoning or based on false evidence, we also require them to be based on sound reasoning and reliable evidence. But a problem similar to the one raised in the preceding paragraph arises here too: just how well justified do our beliefs have to be to count as knowledge? On the one hand, if we restrict knowledge to only those true beliefs arrived at on the basis of flawless reasoning and watertight evidence, we are again likely to exclude from counting as knowledge many of the beliefs that serve us well. On the other hand, with true beliefs generated on the basis of limited evidence or little reasoning beyond guesswork, we risk including beliefs that are true solely by luck.

In addition to the considerations raised in the preceding two paragraphs, it is questionable whether judgments about whether beliefs are sufficiently true and justified to count as knowledge can sensibly ever be made in absolute terms, or whether such judgments shouldn’t themselves depend on context. For example, while for most purposes we might reasonably say that we have knowledge of the time even when our watch is running three minutes slow, our beliefs about the time may not qualify as knowledge if we were estimating how long we have to escape a time bomb that is about to explode. Similarly, in a situation that requires immediate action the standard of justification by which one judges a true belief to be sufficiently justified to

3 The Gettier problem (Gettier, 1963) provides the most prominent challenge to the idea that true and justified belief is sufficient for knowledge. We will ignore these complications and assume that truth and justification are both necessary and sufficient.
constitute knowledge may well be lower than in a situation where there is the time for a more considered decision.

In light of these three considerations, then, for the purposes of what follows we will regard beliefs as knowledge when they are approximately true and reasonably well justified relative to the context in which they play a part. On this basis we can then define a known as any feature of the world that an individual has knowledge of in this sense, and an unknown as any feature of the world that an individual lacks knowledge of.

Understood this way, two forms of unknown can usefully be distinguished. In some cases, they will be features of the world about which an individual has no beliefs whatsoever. In other cases, they will be features about which an individual has beliefs, but where these beliefs are false (or only very vaguely accurate) and/or lack adequate justification. The first case captures what is perhaps most usually meant by an unknown, where the gap in knowledge is characterized by an absence of beliefs concerning some feature of the world. In what follows when we refer to an unknown it is this kind of gap in knowledge we have in mind. The second type of unknown is rather different, since the gap in knowledge in this case is associated with an individual possessing beliefs directly concerned with the relevant feature of the world. Thus in the case of false beliefs, for example, rather than an absence of beliefs it is the presence of a mistakenly held belief—for example that the DJIA closed at 19201.05 on January 10 2017—that sustains an individual’s gap in knowledge concerning that feature of the world.4

We are now in a position to consider the distinction between known unknowns and unknown unknowns, which is usually expressed in terms of whether or not an individual knows about a particular gap in their knowledge. Thus Rumsfeld defines known unknowns as those “gaps we know exist”, while unknown unknowns are those “gaps we don’t know exist” (Rumsfeld, 2011, xiv). Once again the basic idea seems clear enough: while there may be many features of the world of which an individual is ignorant, there are likely some (the known unknowns) that she knows she is ignorant of while there are others (the unknown unknowns) that she does not even know she does not know.

There is, however, an important ambiguity here, since at times Rumsfeld and

4 The true closing value was 19855.53.
others appear to regard a known unknown as a gap in knowledge that an individual not only knows about but is also consciously aware of at the relevant time (e.g. when deliberating over the best course of action, undertaking scenario analysis and so on). And from this perspective the definitions above are imprecise, since knowledge of a thing in the form of approximately true and reasonably well justified beliefs need not imply the presence of that thing in the conscious mind. Our own view is that the key distinction to be drawn is indeed concerned with an individual’s present state of awareness of their own gaps in knowledge, since this is crucial to whether an individual takes into account the things they do not know. We will therefore proceed on the basis that a known unknown is a gap in knowledge that an individual knows about and is aware of at the relevant time, while an unknown unknown is a gap in knowledge that an individual is not aware of at that time, either because they do not know about that gap in knowledge or because, despite knowing of it, they are unaware of it.

3. Hypothetical values and the subjective space of possibilities

While Rumsfeld’s categories provide a useful starting point, additional concepts and distinctions are required if we are to get at the kind of uncertainty that is our focus in the present paper. To this end we now introduce a range of ideas concerning what we call the hypothetical values associated with an unknown. By a hypothetical value we mean any value—an outcome, state of affairs, result, quantity and so on—that could conceivably be thought to be a candidate for the actual or true value of the unknown under consideration. Thus in relation to an unknown such as the winner of the next FIFA World Cup, hypothetical values might include teams such as Brazil, Germany and Algeria, while hypothetical values associated with the extent of Iran’s nuclear weapons programme would include a range of different stages of development. By the set of hypothetical values associated with an unknown we mean the entire collection of values that could conceivably be regarded as the true value of that unknown by any person within the group or community concerned. Thus while an unknown refers to a gap in the knowledge of a particular individual, the set of hypothetical values associated with that unknown is defined for the group as a whole.

Three distinctions can usefully be drawn between the members of the set of hypothetical values associated with an unknown at a given point in time. The first is
between those hypothetical values that are genuinely possible at that time and those that are not, where the former are values that could turn out to be the case while the latter are values that could not. Two points are worth highlighting about this distinction. The first is that whether some hypothetical value is a genuine possibility or not is something that depends on the way the world is rather than what is believed to be the case. Thus where the unknown concerns the outcome of the next spin of a roulette wheel, then whether or not the outcome 00 is a genuine possibility depends on the type of roulette being played. If it is American roulette, with pockets numbered 1 to 36 plus two additional pockets numbered 0 and 00 respectively, then 00 is genuinely possible. And this is so irrespective of any individual’s beliefs about the type of roulette being played. If European roulette is being played, where the wheel has only one additional pocket numbered 0, then 00 is not a genuine possibility, again irrespective of beliefs.

The second point is that where an unknown relates to something that is already determined there can be only one genuinely possible value. Thus where the unknown relates to a past event or feature of a currently existing entity there is a definite way the world is and therefore only one genuinely possible value the unknown can take. The situation is different in the case where the unknown concerns something that is not yet determined such as an event which is yet to occur. In the case of the next spin of a roulette wheel for example, provided the wheel is fair and the outcome of any spin is a matter of pure chance, then there are many genuinely possible values.

The two remaining distinctions relate to the individual with whom the unknown is associated. The second distinction is between those hypothetical values that, at the time concerned, that individual has consciously imagined and those she has not. To illustrate, consider the case in which the unknown again concerns the next spin of a roulette wheel and where, unbeknown to the individual, an American wheel is being used. Further, suppose the individual is familiar with European roulette but unaware of its American cousin. In this case, provided we are dealing with a known unknown, the outcomes 1 to 36, as well as 0, are likely to have been imagined by the individual, while the outcome 00 is not. If we are dealing with an unknown unknown, however, the situation is different. Being unaware of the gap in knowledge, perhaps not even knowing, for example, that a spin of the roulette wheel is about to take place, the individual cannot have consciously imagined hypothetical values at all in respect
of the outcome. The point here holds generally: only in the case of a known unknown can an individual have consciously imagined hypothetical values. Where a gap in knowledge is an unknown unknown to an individual, being unaware of that gap in knowledge at that time, she cannot have contemplated values that might turn out to be the true or actual value.5

The final distinction is between those hypothetical values the individual has consciously imagined and regards as possible and those that individual has imagined but regards as impossible. By “regards as possible” we mean that, at that time, there is nothing the individual can think of that she would regard as an insurmountable barrier to the hypothetical value being true or proving to be the case. Returning to our roulette example and the case where the outcome is a known unknown, if the individual is aware of both American and European variants but believes that a European wheel is being used, it is likely she has consciously thought of outcomes 1 to 36, 0 and 00 as hypothetical values, but regards the latter as impossible given the nature of the wheel being used.

Taken together these three distinctions imply that, for a particular individual and at a given moment in time, all elements of the set of hypothetical values associated with an unknown must fall into one of six categories. These categories and the relationships between them are depicted in Table 1.

5 As one of our referees pointed out, things become more complicated if we allow for unknowns that result from an individual holding false or unjustified beliefs. Then it is possible that an individual can have consciously imagined hypothetical values even in the case of an unknown unknown. To illustrate, consider the case of an unknown that results from an individual holding false beliefs. In particular, suppose that the unknown concerns the outcome of a football match that took place last night. If the individual wrongly believes that the home side won then the outcome of the game is an unknown to that individual and, provided the individual is unaware of her mistake, is an unknown unknown. Yet in this case the individual is likely, at a minimum, to consciously imagine the home team she (wrongly) believes won the game as a hypothetical value. And she may well also consciously imagine, and then dismiss, the other two possible results. The point, then, is that unknowns of this kind may be unknown unknowns and yet still be the subject of conscious reflection.
Hypothetical value is…
<table>
<thead>
<tr>
<th>a genuine possibility.</th>
<th>not a genuine possibility.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Hypothetical values imagined and correctly regarded as possible.</td>
<td>2. Hypothetical values imagined and incorrectly regarded as possible.</td>
</tr>
<tr>
<td>3. Hypothetical values imagined and incorrectly regarded as possible.</td>
<td>4. Hypothetical values imagined and correctly regarded as impossible.</td>
</tr>
<tr>
<td>5. Hypothetical values not imagined.</td>
<td>6. Hypothetical values not imagined.</td>
</tr>
</tbody>
</table>

Table 1: Classifying the hypothetical values associated with an unknown
The six categories depicted in Table 1 provide a framework for describing an individual’s awareness, at a particular point in time, of what may turn out to be true in relation to some unknown. The first column contains hypothetical values that are genuine possibilities. Those in Cell 1 are consciously imagined by the individual and correctly regarded as genuine possibilities, while those in Cell 3 are consciously imagined but mistakenly regarded as impossibilities. Hypothetical values in Cell 5 are ones that, despite being genuine possibilities, are not consciously imagined by the individual at all. The second column contains hypothetical values that are not genuine possibilities. Cell 2 contains hypothetical values that are imagined by the individual and mistakenly regarded as genuine possibilities, while Cell 4 contains hypothetical values that are imagined and rightly regarded as impossibilities. Cell 6 contains hypothetical values that the individual has not imagined and that are anyway not genuine possibilities.

For a given unknown, and a given individual, the distribution of hypothetical values between the six cells in the table at any point in time depends on two sets of factors. Whether a particular hypothetical value occupies a cell located in the first or the second column is something that, as we noted earlier, is determined by the nature of the world at that time and the constraints this places on which values are genuinely feasible. Within each column the distribution of values between rows is then determined by factors specific to the individual concerned. The first of these is whether or not the individual is aware of the gap in knowledge, in other words whether the unknown is a known unknown or an unknown unknown. For as we noted earlier, in the case of an unknown unknown the hypothetical values within each column must reside exclusively in the bottom row of the table, in Cell 5 and Cell 6, since the individual cannot have consciously imagined any hypothetical values. In the case of a known unknown, where the individual is aware of the gap in knowledge, the determining factors are then the individual’s knowledge of the circumstances relevant to the unknown at that time and their cognitive abilities in relation to reasoning, imagination and so forth.

Considering the hypothetical values in the first column of the table, those that are genuine possibilities, in the case of a known unknown for someone with strong cognitive abilities and a good understanding of the situation surrounding the unknown, most or all of the values will reside in Cell 1, with relatively few or even none residing in Cell 3 and Cell 5. An individual with a more limited or mistaken grasp of the situation, or who is less able to reason to, or imagine, genuine possibilities, is likely to make more errors, with fewer elements.
in Cell 1 and more therefore in Cell 3 and Cell 5. Returning to the roulette example, if American roulette is being played and the individual knows only the European variety, then 1-36 and 0 would likely be located in cell 1 and 00 in Cell 5. Cell 3 in this case is likely to be an empty set. If, however, the individual wrongly believed that 12 could not come up on the next spin (it perhaps having come up on the three previous spins), then in this case 12 would be located in Cell 3. Similar considerations apply to the distribution of values among the cells in the second column, where for someone knowledgeable of the situation and with adequate mental powers Cell 2 should be empty, or contain very little, with most or all of the hypothetical values residing in either Cell 4 or Cell 6.6

Before moving on it is worth emphasizing that the analysis here, at least as we have presented it so far and as summarized in Table 1, provides only a static framework for thinking about hypothetical values. That is to say, it characterizes the state of the world (as reflected in the distribution of hypothetical values between the two columns) and a person’s thoughts (as reflected in the distribution of hypothetical values between the three rows) at a given moment. We will keep to this static analysis for the remainder of the paper. But note that it would be possible to incorporate dynamic considerations into this set up, both in the form of changes to the world that alter whether particular hypothetical values are genuinely possible or not, as well as an individual’s learning in response to new information that alters that individual’s beliefs about particular hypothetical values (and perhaps even whether an unknown is a known unknown or an unknown unknown to that person). In the former case the analysis would consist of showing how hypothetical values move within a row, from one column to another, as changes to the world alter whether a given hypothetical value is possible or not. In the latter case the corresponding analysis consists of showing how hypothetical values move within a column, from one row to another, as a person alters their beliefs in response to new information.

Returning to the static case depicted in Table 1, the hypothetical values located in Cell 1 and Cell 2, those consciously imagined and regarded as genuine possibilities, are the kind dealt with in conventional decision theory and which an individual would list explicitly in the

6 In some cases, having a good understanding of the scenario may imply that an individual is likely to consciously imagine, and then dismiss, values that are not genuinely possible (Cell 4) rather than not imagining them at all (Cell 6). An example of this is an experienced gambler who, playing European roulette, may be expected to consciously rule out 00 as a possible outcome rather than not imagine it at all. In general, however, for a knowledgeable individual it will be a matter of that individual’s background beliefs as to whether something that is impossible is thought of and then dismissed, or simply not considered at all.
framing of a decision problem. We will call this set of values the individual’s subjective space of possibilities in respect of an unknown (henceforth SSP). Notice that the SSP in respect of an unknown unknown must necessarily be empty, for as we noted earlier if an individual is unaware of a gap in knowledge that individual cannot even begin to contemplate candidates for its true value. Thus the SSP is of particular relevance to known unknowns, where its contents reflect an individual’s thoughts about what might turn out to be the case with respect to a gap in knowledge that individual is aware of.

The contents of the SSP for any particular known unknown will of course always be relative to the individual’s cognitive abilities and background beliefs in connection with the relevant unknown. Thus someone with a background in nuclear weaponry and a knowledge of conditions in Iran will likely possess a quite different space of possibilities regarding the state of that country’s nuclear weapons programme than someone who does not. In relation to the kind of uncertainty we are primarily interested in in this paper, namely the coming about of things that a person had no conception of prior to their occurrence, we will see in later sections that a key issue is the fit between an individual’s views about the possible values an unknown might take and the way the world actually is in this regard. In some cases, the SSP may coincide perfectly with the objective situation, such that the SSP contains all genuinely possible values (i.e. Cell 3 and Cell 5 are empty) and no others (i.e. Cell 2 is empty). Thus where the gap in knowledge concerns the outcome of the next spin of a fair roulette wheel, and the individual knows that American rather than European roulette is being played, the individual’s SSP is likely to be objectively accurate, that is, containing the outcomes 1–36, 0 and 00, and nothing else.

Such examples represent something of a special case, however, since roulette and games of chance more generally usually feature well-defined, reasonably simple, isolated systems, where it is relatively straightforward for an individual to determine to a high degree of accuracy what may, and may not, turn out to be the case. Yet for unknowns that arise in more practical, real life, scenarios things are often quite different. The complexity of these situations will usually be far higher, making it more difficult for individuals to accurately determine the set of genuinely possible values. In such cases, the SSP is likely to be deficient in some way. There are two possible types of error. The first is that the SSP may omit genuine possibilities, either as a result of a hypothetical value having been contemplated but wrongly judged impossible or because the individual failed to even imagine that value at all. The second source of error is that the SSP may wrongly include hypothetical values that are
impossibilities, outcomes or states of affairs that cannot actually arise.

4. Taleb’s Black Swan

We now turn to the relationship between Rumsfeld’s categories and the seemingly closely related idea of the Black Swan as described by Nassim Taleb. According to Taleb (xvii–xviii), a Black Swan is an event distinguished by three properties:

- **P1**: “It is an outlier, as it lies outside of the realm of regular expectations, because nothing in the past can convincingly point to its possibility”;
- **P2**: “it carries an extreme impact”; and
- **P3**: “in spite of its outlier status, human nature makes us concoct explanations for its occurrence after the fact, making it explainable and predictable.”

We will focus primarily on P1 in what follows, as it is here that the issues addressed in the present paper surface most clearly in Taleb’s account. P2 and P3 concern things that for the most part lie beyond our immediate concerns.

As we have already noted, the property of a Black Swan highlighted in P1 is that it is an event that “lies outside the realm of regular expectations” (Taleb, 2007, p. xvii). The same kind of idea is expressed towards the end of the book where Taleb writes: “Remember that for an event to be a Black Swan, it does not just have to be rare, or just wild; it has to be unexpected, has to lie outside our tunnel of possibilities” (Taleb, 2007, p. 213). Unfortunately Taleb does not appear to define terms such as “realm of regular expectations” or “tunnel of possibilities”, and, evocative as these phrases may be, they are lacking in precision. We will accordingly try to add some by formulating what he has to say in terms of our earlier framework and the notion of the SSP in particular.

To do so it is first necessary to say something about the context within which an individual’s expectations about the future arise. In terms of our own framework this means specifying the relevant unknown, namely the aspect of future events about which the individual is unsure. In some cases this unknown may be quite specific, such as whether a company will move into profit over the next quarter or the outcome of the next spin of a roulette wheel. In other cases the unknown may be considerably more vague, reflecting uncertainty about the course of events in general rather than a particular, well-defined, aspect of the world. Whatever its level of generality, the unknown may be known or unknown depending on the individual concerned. In the case of someone actively contemplating the
(relevant aspect of the) future—a financial analyst evaluating a company, for example, or a gambler where to place a bet—the gap in knowledge is a known unknown. Alternatively, where an individual has not thought about the (relevant aspect of the) future the gap in knowledge is an unknown unknown.

Once the relevant unknown is specified, Taleb’s P1 can then be given more precise formulation by relating it to an individual’s SSP. When Taleb writes of events that lie outside the “realm of regular expectations” or the “tunnel of possibilities” we will interpret him to mean events that, at the time of their occurrence, were not foreseen even as possibilities by the individual concerned. Such events then correspond to hypothetical values that, at the point in time at which uncertainty resolves and the actual value of the unknown becomes known, lie outside the individual’s SSP in relation to that unknown. Table 1 above includes four cells whose members fall outside the SSP, namely Cells 3, 4, 5 and 6. From the point of view of Taleb’s first property, then, hypothetical values in these four cells represent candidates for Black Swans, events whose occurrence would constitute Black Swans provided P2 and P3 are also satisfied. For an unknown unknown, of course, all hypothetical values lie outside the individual’s SSP and so represent candidates for Black Swans in this sense. In the case of a known unknown the distribution of hypothetical values in terms of membership or not of the SSP will be determined by the kinds of factors discussed in the preceding section.

The analysis here can be taken one step further by incorporating the fact that, in virtue of P2 and P3, only events that have actually occurred can be Black Swans on Taleb’s schema, since it is only once an event has taken place that it can have an extreme impact and be the subject of post hoc rationalisations. It follows that a Black Swan must correspond to a hypothetical value that was a genuine possibility. Making this requirement explicit Taleb’s first condition for an event to be a Black Swan is then that:

\[
P1': \text{The corresponding hypothetical value is a genuine possibility and, at the time the event occurs, lies outside the SSP in respect of the relevant unknown, either because it was not imagined or was wrongly deemed impossible.}
\]

The requirement that the corresponding hypothetical value be a genuine possibility means that we can disregard as candidate Black Swans those hypothetical values located in the right-hand column of Table 1; only those hypothetical values located in Cell 3 and Cell 5 satisfy P1'.

7 One advantage of formulating Taleb’s ideas in terms of our own framework is that doing so makes it clearer how, prior to the occurrence of some event, that event might change from being a candidate Black Swan for an
We summarize this in Table 2, a cut down and re-interpreted version of Table 1, which illustrates our formulation of Taleb’s first property by distinguishing three possible scenarios in relation to an individual’s expectations concerning an event that has occurred.

<table>
<thead>
<tr>
<th>Event that occurred was ...</th>
<th>At the time of the event’s occurrence the corresponding hypothetical value was ...</th>
<th>consciously imagined by the individual and...</th>
<th>regarded as possible.</th>
<th>1a. correctly regarded as possible.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>regarded as impossible.</td>
<td>3a. incorrectly regarded as impossible.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| | not consciously imagined by the individual. | 5a. not imagined. | | |

Table 2: Reformulating Taleb’s first property

Cell 1a corresponds to the case where an individual has correctly imagined the event as a possibility. The corresponding hypothetical value was therefore included in the individual’s SSP and the event does not satisfy our formulation of Taleb’s first property. Cell 3a and Cell 5a correspond to the two cases that do satisfy our formulation of Taleb’s first property, events that have occurred and that, at the time of their occurrence, their corresponding hypothetical values fell outside the SSP. Cell 5a, where the event was not even imagined, is perhaps the more straightforward of the two. This case is illustrated by the example in which the (known) unknown is the outcome of a game of American roulette being played by someone familiar with only the European variety. Accordingly the individual does not even imagine the hypothetical value 00 and include it in their SSP. Facing the same (known) unknown Cell 3a is illustrated by the case of hypothetical value 00 dismissed as impossible by the roulette player who knows the difference between American and European roulette, but who is operating under the mistaken assumption that European rather than American roulette is being played.8

5. Uncertainty

In this final part of the paper we explore the relationship between the ideas discussed in the

8 It is interesting that the source of the title of Taleb’s book, the discovery in the late 17th century of the existence of black swans in Western Australia by a party led by Dutch explorer William de Vlamingh, falls into this second category. For the existence of black swans was up to that point regarded as an impossibility in Europe, a source of the simile that can be traced back as far as the Satires of the Roman poet Juvenal writing at the turn of the first century (Juvenal, Satire 6).
preceding sections and the conception of uncertainty advanced by Tony Lawson in a string of papers published over the course of the 1980s (Lawson, 1985, 1987, 1988). Since Lawson never addressed the subject of unimagined possibilities in these papers, we will attempt to show how our earlier discussion of unknowns, hypothetical values and the SSP may be used to augment his account in this regard.

The primary influence on Lawson’s writings on uncertainty is J.M. Keynes, a rich source in virtue of the significant contribution Keynes made to the subject of probability in his 1921 *A Treatise on Probability* (Keynes, 1921/1973) and, in some ways perhaps even more so, for the glimpses of this work in his later economic writings on uncertainty in his *General Theory* and beyond (Keynes, 1936; 1937). Much of Lawson’s contribution in the three papers cited above lies in unpacking and building on Keynes’s ideas on probability—and also, but to a lesser extent, those of Knight (1921)—which went on to form an important plank of his wider critique of, and alternative to, mainstream economics (Lawson, 1997, 2003).

Understanding Lawson on the topic of uncertainty therefore requires going back to *A Treatise on Probability*. This is not an entirely straightforward matter as the conception developed there is rather different from the modern view of probability as a branch of mathematics and its more familiar frequentist or subjectivist interpretations. What Keynes proposes instead is a view of probability as an indicator of the strength of the argument, or what he calls the probability-relation, between some conclusion and the evidence bearing on it. He formalizes this idea as follows:

Let our premisses (sic) consist of any set of propositions h, and our conclusions consist of any set of propositions, a, then, if a knowledge of h justifies a rational belief in a of degree α, we say that there is a probability-relation of degree α between a and h (Keynes 1921/1973, p. 4)

The probability-relation is written:

$$a/h = \alpha$$

(1)

where, for example, a might be the proposition “inflation will be 4% next year”, h a body of evidential propositions concerning recent changes in the money supply, interest rates, aggregate demand and so on relevant to a, and α the rational degree of belief, or probability, that h justifies in a. Keynes makes a useful distinction between primary and secondary
propositions here, where the latter involve assertions about probability-relations while the former do not. With respect to (1) above, \(a \) is the primary proposition, and the probability relation (1) is the secondary proposition. The secondary proposition is thus both a proposition in its own right and a statement about the primary proposition. The set of evidential propositions, \(h \), may include (other) secondary as well as primary propositions.

Keynes holds that the value of \(\alpha \) in any probability relation ranges between 0, where not-\(a \) is a logical consequence of \(h \) and \(a \) is therefore impossible, and 1, where \(a \) is a logical consequence of \(h \). The intermediate values represent cases in which \(h \) only partially entails \(a \). An important and, from a modern point of view rather idiosyncratic feature, of Keynes’s theory is his insistence that the rational degrees of belief represented by \(\alpha \) are generally not numerically definite, nor necessarily even pair-wise comparable in terms of more than, less than, or equal to (Keynes, 1921/1973, p. 37).

To flesh out this scheme it is helpful to consider Keynes’s views on knowledge and the cognate categories of certainty and truth. Knowledge, for Keynes, corresponds to true and certain rational belief, where certainty denotes the highest degree of rational belief in a proposition.\(^9\) He distinguishes between direct and indirect knowledge, reflecting the two ways in which he believes knowledge of propositions can be acquired. The first is by “direct acquaintance”, whereby “we are able to pass from direct acquaintance with things to a knowledge of propositions about the things of which we have sensations or understand the meaning” (Keynes, 1921/1973, p. 13). Although alive to the difficulties and possible objections involved, he proceeds on the basis that direct acquaintance always leads to certain rational belief.\(^10\) The second route is “indirectly, by argument, through perceiving the probability-relation of the proposition, about which we seek knowledge, to other propositions” (Keynes, 1921/1973, p. 12), where these other propositions correspond to the body of known evidential premises \(h \).

Returning to (1), Keynes holds that the probability relation is only ever known directly, and, when known in conjunction with the body of evidential propositions \(h \), provides indirect knowledge about \(a \) (when \(a/h < 1 \)), or of \(a \) (when \(a/h = 1 \)). In the former case this

\(^9\) “… knowledge of a proposition always corresponds to certainty of rational belief in it and at the same time to actual truth in the proposition itself. We cannot know a proposition unless it is in fact true” (Keynes, 1921/1973, p. 11).

\(^10\) “… I have assumed that all direct knowledge is certain. All knowledge, that is to say, which is obtained in a manner strictly direct by contemplation of the objects of acquaintance and without any admixture whatever of argument and contemplation of the logical bearing of any other knowledge on this, corresponds to certain rational belief and not to a mere probable degree of belief.” (Keynes, 1921/1973, p. 17).
knowledge is said to entail a probable degree of rational belief of degree α in the proposition a, while the latter case involves certain belief in a.\(^{11}\)

Keynes’s theory represents a form of epistemic probability, concerned as it is with degrees of belief, and to this extent has affinities with the subjectivist or personalist interpretation associated with Ramsey (1931), de Finetti (1937/1964) and Savage (1954). The main difference between Keynes and these authors, besides his view that probabilities are generally not point valued, is that the degrees of belief he has in mind are not merely subjective or personal to the individual concerned, but the degrees of belief it is rational to hold in any proposition given the evidence bearing on it. The only subjectivity Keynes admits in his scheme is with respect to the contents of h, which he sees as depending on individual circumstances. Given h, however, he believes there is only one objective probability-relation between a and h.

Keynes does not define uncertainty in *A Treatise on Probability*, and one of the aims of Lawson’s 1985 paper is to provide an interpretation of uncertainty consistent with the framework sketched above. Building on the idea that uncertainty must involve a lack of certainty of some kind, Lawson proposes that uncertainty corresponds to the situation in which direct knowledge of the secondary proposition is absent (Lawson, 1985, p. 913). Uncertainty can then arise in one of two ways: (1) where the relevant probability relation is unknown due to an individual’s inability to argue from given evidence to the degree of rational belief it justifies in some proposition, and (2) where there exists no method for determining a numerical measure of the probability relation, namely where probabilities are numerically immeasurable or indeterminate (Lawson, 1985, p. 913).\(^{12}\)

On the basis that the first of these, the situation where an individual may simply lack the wherewithal to arrive at the true numerical probability, does not seem to feature elsewhere in Keynes’s work, Lawson argues for the second interpretation as being most in keeping with Keynes’s use of the term uncertainty in his economic writings. A difficulty with this

\(^{11}\) There is tension between the places in which Keynes describes knowledge as corresponding to true and certain belief, and the places in which he talks about indirect knowledge where “knowledge” falls short of certainty. Keynes seems to sense something of this problem where he writes: “I assume then that the (sic) only true propositions can be known, that the term ‘probable knowledge’ ought to be replaced by the term ‘probable degree of rational belief’, and that a probable degree of rational belief cannot arise directly but only as the result of an argument, out of the knowledge, that is to say, of a secondary proposition asserting some logical probability-relation in which the object of belief stands to some known proposition” (Keynes, 1921/1973, p. 18). It is therefore helpful to read Keynes’s references to indirect knowledge as referring to degrees of belief that are only probable, save of course for the limit cases in which $a/h = 1$ or $a/h = 0$.

\(^{12}\) An alternative interpretation of (2), noted but rejected by Keynes primarily on the grounds of maintaining as general a notion of probability as possible, is to say that in such circumstances there exists no probability relation at all (Keynes, 1921/1973, p. 11).
interpretation, however, is that on Keynes’s own account in *A Treatise on Probability*, it is quite possible to have direct knowledge of the secondary-proposition and for the probable degree of belief it justifies nevertheless to be numerically immeasurable or numerically indeterminate. For Keynes, in other words, numerically immeasurable or indeterminate probabilities are not necessarily a sign of an absence of direct knowledge of the secondary proposition.

This problem is avoided in a later paper in which Lawson returns to the subject of Keynesian uncertainty, but this time moves away from associating uncertainty with the absence of direct knowledge of the secondary proposition. Instead uncertainty is simply equated with numerically immeasurable or indeterminate probability-relations. The crucial passage is a long footnote, the first half of which runs as follows:

> In *A Treatise on Probability* and later in the *General Theory*, Keynes essentially distinguishes three types of probability-relation: the first where a probability-relation is numerically indeterminate and possibly not even comparable to (in terms of less than, equal to, or greater than) other probability relations; the second where probabilities are numerically determinate but less than unity (and greater than zero); and the third where probabilities take the value of unity (or zero). The first type of probability, for Keynes, corresponds to a situation of uncertainty (see Lawson, 1985) and the third to a situation of certainty. Moving from the first type through the second towards the third, Keynes talks … of the argument in question being less 'uncertain' … (Lawson, 1987, p. 953, f. 2)

The conception of uncertainty captured in this passage is strongly reminiscent of that expressed in Knight’s (1921) famous distinction between risk and uncertainty, where the former corresponds to situations in which numerically definite probabilities can be determined and the latter to situations in which they cannot. In a slightly later paper in which he compares various interpretations of probability and uncertainty, Lawson again comes down explicitly in favour of this Keynesian / Knightian view of uncertainty as “corresponding to situations wherein numerically measurable probabilistic knowledge is not available” (Lawson, 1988, p. 62).

We are now in a position to consider how these ideas fit with our earlier discussion of unknowns, hypothetical values and the SSP. The site we use to explore this question is the famous passage from Keynes’s 1937 *QJE* defense of *The General Theory*, also quoted and discussed by Lawson (1985, p. 914), in which, sixteen years after *A Treatise on Probability*
was published, Keynes outlines what he means by uncertainty:

By “uncertain knowledge”, let me explain, I do not mean merely to distinguish what is known for certain from what is merely probable. The game of roulette is not subject, in this sense, to uncertainty; nor is the prospect of a Victory bond being drawn. Or, again, the expectation of life is only moderately uncertain. Even the weather is only moderately uncertain. The sense in which I am using the term is that in which the prospect of a European war is uncertain, or the price of copper and the rate of interest twenty years hence, or the obsolescence of a new invention, or the position of private wealth-holders in 1970. About these matters there is no scientific basis on which to form any calculable probability whatsoever. We simply do not know (Keynes, 1937, pp. 213-214).

While Keynes does not explicitly contrast risk with uncertainty in this passage, his message is clearly in keeping with the conception of uncertainty outlined above. Keynes illustrates his view with a spectrum of examples aimed at demonstrating the extent to which numerically definite probabilities of events or outcomes can be determined in each case. We reproduce Keynes’s spectrum diagrammatically in Figure 1.

![Figure 1. Keynes’s spectrum of examples](image)

The examples grouped together on the left, the cases of roulette and a lottery draw, are ones in which numerical probabilities can be calculated on an *a priori* basis by assuming equal probabilities of the elementary outcomes. Those grouped in the middle, the expectation
of life and the weather, are ones in which numerical probabilities can sometimes be
determined, at least within limits, by way of an empirical estimation of underlying
frequencies. The cases grouped together on the right, according to Keynes, are ones in
which there is no scientific method for the calculation of numerical probabilities. Moving
between these three groups from left to right across the spectrum, then, we move
progressively from situations in which numerical probabilities can be determined, situations
of “risk” (Dequech, 2000; Dow, 2015; Knight, 1921; Lawson, 1988; Meeks, 2003), through to
situations of “uncertainty” in which they cannot.

As well as illustrating Keynes’s notion of uncertainty, the spectrum of examples in
Figure 1 also provides a useful bridge to the various concepts discussed in earlier parts of the
present paper. Each of the examples corresponds to an unknown in Rumsfeld’s sense, since
they all concern gaps in knowledge (in this case pertaining to the future, such as the outcome
of a lottery, the weather over some period or the price of copper twenty years’ hence). Each of
these gaps in knowledge have a set of hypothetical values associated with them, with each
member of each set corresponding to an outcome or state of affairs that could be thought to be
the actual or true value associated with the unknown under consideration. And the subset of
each set of hypothetical values that the individual consciously imagines and regards as
genuinely possible with respect to each unknown corresponds to the SSP of that individual,
where each member of that subset may be the subject of probability judgments by that
individual (primary propositions in the language of A Treatise on Probability). Note we will
assume that we are dealing with known unknowns in each case here, since otherwise the SSP
would simply be empty. Returning to our earlier example of the proposition that inflation will
be 4% next year, this proposition is one hypothetical value associated with the known
unknown that is next year’s inflation rate. This proposition will be subject to uncertainty in
Keynes’s sense, insofar as it does not have a numerically measurable probability.

One of the advantages of locating Keynes’s and Lawson’s ideas within our earlier
framework in this way is that it brings into focus aspects of uncertainty—here understood in

13 Knight, like Keynes, distinguishes between a priori probabilities and frequencies when talking about
numerical probabilities, which he then counterposes against uncertainty (Runde, 1998).
14 Proponents of the subjectivist Bayesian interpretation of probability have argued that, if subjective degrees
of belief are “rational” in the sense of conforming to the strictures of something like the Savage axioms (Savage
1954), all probabilities become numerical and the distinction between risk and uncertainty evaporates (Leroy and
Singell, 1987). However, there is considerable empirical evidence that people often do not behave “as if” they
are assigning numerically definite probabilities to the things they are uncertain about even in relatively
straightforward situations (Ellsberg, 1961), and a large amount of theoretical work, much of it by people
working within the subjectivist Bayesian tradition, aimed at modelling these cases (e.g. Bewley, 1986;
Gärdenfors and Sahlin, 1988).
its generic sense as referring to an absence of certainty of some kind—relatively neglected in their accounts. The remainder of this section is devoted to one of these aspects, what we will call unimagined possibilities. What we have in mind here are the kinds of outcomes or eventualities we mentioned at the start of the paper: industrial accidents, terrorist actions, scientific discoveries, political developments and the like that many people seem not to have entertained even as possibilities prior to their occurrence.

Unimagined possibilities of this sort are hypothetical values, associated with an unknown, that while being genuine possibilities have not been consciously imagined as such by the individual concerned. They therefore correspond to the hypothetical values located in Cell 5 of our earlier Table 1. It could be argued that hypothetical values in Cell 3, those that have been contemplated but wrongly deemed impossible, should also be considered unimagined possibilities since they too concern things the individual has not imagined as actually occurring. While the existence of such values may be significant, as a potential source of Black Swans for example, we will exclude them from the present analysis to focus on those genuine possibilities that have not entered the individual’s conscious mind at all.

We touched on the notion of unimagined possibilities earlier in the paper, in relation to the question of how closely an individual’s SSP is likely to match objective reality. More specifically, we noted that the SSP may be deficient in two ways: first, it may omit values that are genuine possibilities, and second, it may include values that are not genuine possibilities. Unimagined possibilities are one source of the first kind of error, where an individual has failed to come up with a value that the unknown might actually take. Values that have been imagined but rejected as impossible—those in Cell 3—represent a second source of this first kind of error. The extent to which the SSP exhibits a close fit with objective reality, and so avoids such errors, depends jointly on the nature of the unknown and the cognitive abilities and background knowledge of the individual concerned. And it was in this context we argued that unknowns associated with games of chance represent something of a special case, for unlike many of the unknowns that arise in life, such games typically involve well-defined, relatively simple, closed systems in respect of which it is comparatively straightforward to determine the set of genuinely possible outcomes.

From this perspective it is significant that most of the examples Keynes refers to in the earlier QJE passage are similar to games of chance in terms of the limited scope for unimagined possibilities. To see this, and remembering that it is known unknowns we are dealing with here, consider what the SSP is likely to look like for a typical individual in each
of the examples in Figure 1. In the cases of roulette and the drawing of a Victory bond we are in the realm of games of chance of the sort just described and for which the set of genuinely possible hypothetical values is typically known from the outset or else easily determined. In these cases, we would expect the SSP to comprise only, and all, the genuinely possible outcomes of the spin or draw and for there to be no unimagined possibilities.

In cases in which the unknown concerns the value of a single variable—the price of copper or the interest rate in twenty years’ time, and even the expectation of life—the set of genuinely possible hypothetical values is restricted to a range on the real line. Here again, then, we would expect the SSP to match closely the set of genuinely possible values, where the only way in which the latter might fall outside the SSP is where an individual sets the upper or lower bounds of the range too conservatively. In such a scenario, however, the genuinely possible values omitted from the SSP are unlikely to constitute unimagined possibilities. Rather they are likely to reside in Cell 3 rather than Cell 5, having been imagined and considered impossible, rather than not having been imagined at all. The cases of the prospect of a European war or the obsolescence of a new invention illustrate a further class of unknown where the set of genuinely possible hypothetical values is easily deduced, for in these cases there are only two genuinely possible hypothetical values, namely that the war or obsolescence either occurs or does not. In cases of this kind, where the possible outcomes are binary and restricted to x and $\neg x$, the SSP will plainly already include the full set of hypothetical values and nothing else. Once more, unimagined possibilities are unlikely.

For the most part, then, Keynes’s examples impose relatively definite and easily understood constraints on the genuinely possible hypothetical values, either because the unknown relates to a relatively simple part of the world or because of the (e.g. binary) way in which the unknown is framed. There is then minimal scope in these examples for the kind of deficiencies in the SSP mentioned above and for the existence of unimagined possibilities in particular. The only two of Keynes’s examples which differ in this regard are those concerning the weather and, perhaps most clearly, the position of private wealth-holders 33 years hence. What is special about these cases is that the unknowns relate to a complex part of reality—systems characterized by numerous components, their interactions and then, in the case of the position of private-wealth holders, viewed over an extensive time horizon—and that they are framed in a relatively loose and open-ended way. As a result, in determining the

15 By a typical individual here we mean someone with an average level of cognitive ability and relevant background knowledge. Restricting things in this way allows us to focus solely on the impact the nature of the unknown has on the scope for unimagined possibilities.
SSP an individual is faced with coming up with hypothetical values in relation to scenarios where key factors and their possible interactions may be difficult to identify, and perhaps even unknowable at the time, and where the framing of the unknown imposes far fewer constraints than the earlier examples. The scope for deficiencies in the SSP in these cases is accordingly much greater than in Keynes’s other examples, and where this, particularly with respect to the position of private wealth-holders more than three decades into the future, will likely include the existence of unimagined possibilities.

The absence of an explicit treatment of unimagined possibilities in the Keynes / Lawson account of uncertainty is perhaps not surprising in view of it starting with the Keynesian probability relation. For the focus then falls quite naturally on the probability of, or uncertainty in respect of, what Keynes calls the primary proposition—as opposed to the uncertainty in regard of perhaps not even being able to come up with one or more primary propositions that might be relevant to the problem at hand. Or, to put it in our terms, the focus from the outset is on imagined hypothetical values.\(^{16}\)

However, and as writers such as Rumsfeld and Taleb have become famous for pointing out, unimagined hypothetical values may be important too. This is evident simply from considering examples in which this type of uncertainty looms large, for example when thinking about the kind of products a major scientific advance might lead to in 10 year’s time, about potential improvised weapons that might be used by a terrorist organization, or about the long-term economic consequences for the UK of Brexit. In these kinds of scenarios traditional approaches to probability that presuppose knowledge of an exhaustive list of mutually exclusive hypothetical values (“outcomes”) simply do not apply, and accordingly, the approaches to decision-making on which they are based.

Up to this point in the discussion we have focused on uncertainty regarding membership of the SSP, particularly in relation to unimagined hypothetical values that lie outside the SSP. We close this section by drawing attention to an associated, though distinct form of uncertainty that is central to Keynes’s account of investor behavior and liquidity preference. The kind of uncertainty we have in mind here flows from a lack of awareness about features of the world—what we will henceforth refer to as influences—that may go on to affect which of the hypothetical values in the SSP turns out to be the true or actual one. Note that uncertainty here is not about membership of the SSP, but about influences that, if

\(^{16}\) The contrast between unimagined possibilities and those hypothetical values located in Cell 3 of Table 1 is again instructive here, for unlike the former values which are ones that have not even been contemplated, the latter values are ones the individual is aware of but believes that the evidence points to their impossibility.
they were known and contemplated, might enter probability judgments concerning individual members of the SSP. Keynes’s example of the prospect of European war nicely illustrates the distinction. While the binary nature of the unknown means that there is little scope for uncertainty in relation to the contents of the SSP in this case, the complexity of the scenario means there is likely to be considerable uncertainty over influences relevant to the determination of the probability of there being a war.

This kind of uncertainty is closely related to what Keynes calls the weight of evidence. As presented in Chapter 6 of *A Treatise on Probability* (Keynes, 1921/1973, pp. 77-85), the weight of evidence is an indicator of the size in some sense, or the degree of completeness or spread, of evidence on which a probability judgment is based. While Keynes reveals a measure of ambivalence about the concept (1921/1973, p. 77, 345), he never fully rid himself of the idea that “the degree of completeness of the information upon which a probability is based does seem to be relevant … in making practical decisions” (Keynes, 1921/1973, p. 345) and it resurfaces in his later economic writings on investor behavior and liquidity preference in the *General Theory* (Keynes, 1936/1973) and subsequent correspondence (Runde, 1990, 1994, 2003; O’Donnell, 1989, 1991).

Lawson does not have much to say about the weight of evidence, but touches on the idea in the second part of the long footnote on uncertainty from his 1987 paper quoted above:

Moving from [numerically indeterminate probabilities to numerically definite probabilities], Keynes talks … also of the weight of the argument increasing. For Keynes the weight of an argument appears to be the ‘degree of completeness of the information upon which a probability is based’ (Keynes, 1973, p. 345) or, equivalently, the ‘balance... between the absolute amounts of relevant knowledge and of relevant ignorance respectively’ (Keynes, 1973, p. 77). Thus as relevant evidence increases so too does the weight. Keynes seems to suggest that certainty can only be reached when weight is at its highest, and this in turn appears to correspond to a situation where the relevant evidence is complete (Lawson, 1987, p. 953, f. 2)

We agree that low weight and Keynesian uncertainty are linked and with the idea that uncertainty of this sort often decreases as evidence becomes more complete (Runde, 1990).

17 Keynes is circumspect about the extent to which weight can be measured, and his views in this regard mirror those he expresses about probability: “Only in a restricted class of cases can we compare the weights of two arguments in respect of more or less” (Keynes, 1921/1973, p. 77).
But we disagree with the suggestion, if it is indeed being made by Lawson here, that increases in weight necessarily equate to coming closer to being able to determine numerically definite probabilities. There are many situations in which the evidence may be highly complete but in which it is not possible to determine probabilities, whether this be on the basis of equal probabilities, a knowledge of stable frequencies, or indeed even by looking at peoples’ propensities to bet on different outcomes (Bewley, 1986; Gärdenfors and Sahlin, 1988; Levi, 1974). While increases in weight may well reduce uncertainty in some sense they do not necessarily lead any closer to numerical probabilities.

That aside, the ideas expressed by Keynes and Lawson on this front are comfortably accommodated within the framework we developed earlier in the paper. Putting the matter in slightly more general terms than Keynes does in *A Treatise on Probability*, we propose that the weight of evidence on which a probability judgment is based is usefully interpreted as an indicator of the extent to which relevant influences are contained in the evidence on which that judgment is based. This could be described as the weight of evidence reflecting the degree of completeness of the evidence, or from a Rumsfeldian perspective, as the balance between influences that are knowns and those that are unknowns. That is, when weight is low and the evidence highly incomplete, many of the relevant influences are unknowns and so absent from the set of evidential propositions. Conversely when weight is high and the evidence relatively complete, most of the relevant influences are knowns.

Thinking about weight of evidence in this way leads us to two closing observations. The first, if low weight is indeed a reflection of unknown influences, is that unknown unknowns— influences that an individual is not even aware of being ignorant of—are likely to be especially pernicious in this regard. An individual who is not even aware of not knowing about some influence cannot begin to factor these things into their probability judgments, whereas, if the influences are known unknowns, they can at least begin to form a view as to the hypothetical values associated with those influences. Perhaps it is this that Keynes had in mind with his famous remark that we “simply do not know” (Keynes, 1937, pp. 213-214). In any event, these considerations take us back to our earlier discussion concerning the accuracy of the SSP, with a given unknown influence contributing most to low weight of evidence when the accuracy of the associated SSP is poor.

The second observation concerns how the nature of the situation in which probability judgments are being made affects evidential weight. In general, the more open or complex such situations, particularly where the unknown concerns outcomes that lie in the distant
future, the greater the scope for unknown influences. Keynes’s examples again serve to illustrate this point. Thus as we move across the spectrum from left to right in Figure 1, from one grouping to the next, the situations involved generally become progressively more open in the sense of providing increasing scope for the existence of as yet unknown influences that may go on to affect which of the hypothetical values in the SSP turns out to be the true one. And as before, this openness may also contribute to the inaccuracy of the SSP in relation to known unknowns, exacerbating further the problem of low weight. In contrast, the situations in which it is possible to derive probabilities on an \textit{a priori} basis, or to measure stable frequencies, situations that approximate what Lawson in his later work calls closed systems, are likely to be ones in which weight is that much higher.

6. Conclusion

Most of the discussion of uncertainty in economics over the last 30 years or so, both in mainstream and heterodox contributions such as Tony Lawson’s, has focused on situations in which the objects of uncertainty can at least be imagined and stated in a way that allows them to be the subject of probability judgments (even if such judgments tend mostly to be qualitative rather than quantitative in nature). This focus has resulted in a relative neglect of the kind of uncertainties that flow from the existence of possibilities not even imagined and which therefore cannot be the subject of probability judgments.

We have attempted to address this neglect by developing a conceptual framework that takes as its starting point Donald Rumsfeld’s famous distinction between known unknowns and unknown unknowns. The resulting framework provides a precise interpretation of Rumsfeld’s categories, terms that while widely employed are nonetheless under-theorized and

\footnote{Two referees pressed us to include more on the links between our argument and the writings of G.L.S. Shackle. These links would merit a paper of their own, but the broad connection as we see it is that, from his early writings on uncertainty onwards, Shackle (1949, 1955, 1956) was concerned with what in our language is the SSP being deficient in the sense of not containing all genuinely possible hypothetical values. Shackle’s non-additive measure of potential surprise was designed to avoid these problems, i.e. to provide a measure of (dis-)belief that could be employed even in the absence of an exhaustive set of, in his terminology, hypotheses. Shackle did not have much to say about the idea of non-numerical probability à la Keynes, and, although alive to the artificiality this entails, was generally content to use continuous (numerical) potential surprise functions in his iconic potential surprise diagrams (e.g., Shackle, 1979, p. 106). But he did briefly consider the weight of evidence, suggesting that it introduced a tension with the idea of probability as a branch of logic as outlined in Chapter 1 of \textit{A Treatise on Probability} (Shackle, 1979, pp. 128-133). He concluded that the weight of evidence might “seem a little more accessible to this theme” than the notion of logical probability, suggesting that “the effect I would ascribe to ‘new evidence’ is that of increasing the richness of suggestion on which the chooser can draw in imaging rival sequels to any contemplated course of action” (Shackle, 1979, p. 132). We suggest that the interpretation of the weight of evidence offered above as a measure of the degree of completeness of the evidence would likely have been even more accessible to his theme, as it gives expression to what he called unknowledge in decision making under uncertainty and which formed such a consistent theme throughout his writings (Shackle, 1972, 1979, 1983).}
prone to inconsistent usage. Building on these ideas we then put forward an exhaustive categorization of the different kinds of hypothetical values that might be associated with any unknown, and a means of describing what is contained in any individual’s subjective space of possibilities.

One of the benefits of frameworks of this kind is that they provide useful vehicles for making connections with other accounts. We did so in the present paper, concentrating on Nassim Taleb’s Black Swan and Tony Lawson’s writings on Keynesian uncertainty. One of the payoffs is that this allowed us to distinguish six distinct varieties of uncertainty. We close with a brief summary of what these varieties are.

The first corresponds to the most basic form of uncertainty dealt with in the paper, that relating to an individual’s ignorance about some aspect of the world:

(1) Uncertainty concerning the existence of unknowns, whereby a person lacks knowledge about some feature of the world.

This first and most fundamental form of uncertainty provides the basis for Rumsfeld’s various categories and our subsequent account of hypothetical values and the SSP. It is also the starting point for Keynes’s and Lawson’s work on uncertainty, with a particular emphasis on unknowns that relate to future states of the world.

A second kind of uncertainty, captured by Rumsfeld’s distinction between known unknowns and unknown unknowns, is that relating to a person’s ignorance of their own gaps in knowledge:

(2) Uncertainty concerning the existence of unknown unknowns, where a person is unaware of some gap in knowledge.

(2) can be thought of as a special case of (1), where the fact that something is unknown to an individual is viewed as a feature of the world in its own right. As we have discussed, this second kind of uncertainty is largely absent from the Keynes / Lawson framework. A third kind of uncertainty concerns the accuracy of an individual’s SSP in relation to some unknown:

(3) Uncertainty concerning whether or not the membership of the SSP associated with an unknown is “correct”. In the case of an unknown unknown the SSP is an empty set by definition and so inaccurate. In the case of a known unknown one or more genuinely possible hypothetical values associated with that gap in knowledge may be wrongly
excluded from the SSP, or one or more impossible hypothetical values may be wrongly included in the SSP.

As with (2), neither Keynes or Lawson have much to say about this kind of uncertainty, a point we highlighted in the preceding section in relation to unimagined possibilities in particular. A fourth kind of uncertainty concerns the actual outcome associated with some unknown:

(4) Uncertainty concerning which of the hypothetical values in the SSP is the true one.

This, of course, is the standard case that writers concerned with probability have traditionally focused on, and which orthodox decision theory as represented by the Savage “small world” model is pretty much restricted to. As we have seen, many of the authors who have written on this form of uncertainty in their writings differ in their views about the extent to which it can be expressed by numerical probabilities in different situations. This consideration leads to a fifth kind of uncertainty or what is sometimes called ambiguity (Einhorn & Hogarth, 1986), namely:

(5) Uncertainty concerning which of the hypothetical values in the SSP is the true one but which actors are unable or reluctant to express as numerically definite probabilities.

This fifth case corresponds to the Keynes/Knight/Lawson formulation of uncertainty, as illustrated by the examples towards the right hand side of the spectrum in Figure 1. Finally, we highlighted a sixth form of uncertainty:

(6) Uncertainty concerning unknown possible influences that might affect which of the members of the SSP will turn out to be the true one.

We argued that (6) has affinities with Keynes’s notion of evidential weight, and is where we see an at least subliminal intersection between the work of Lawson and Keynes on the one hand and the ideas of Rumsfeld and Taleb on the other.
References

Processes, vol. 124(2), pp. 268-283

Knight, F.H. 1921. Risk, uncertainty and profit, Chicago, University of Chicago Press

