Letter to the editor of ‘Travel Medicine and Infectious Disease’ journal

Keywords: electricity, malaria, households, development policy

The electrification malaria nexus

Dear Madam, I am writing this letter to the editor of ‘Travel Medicine and Infectious Disease’ journal to appraise the readers of the existence of a possible nexus between the use of electricity in private dwellings and malaria occurrence in malaria endemic countries.

Sub-Saharan countries are currently facing a number of similar challenges which, among others, include the need to increase access to electricity and to reduce the morbidity and the mortality rate related to malaria. This letter has two main interrelated objectives; on one hand, it has the ambition to raise everyone’s attention –in particular that of the Governments of countries where malaria is still an endemic disease and the electrification process is undergoing- about the possible existence of this nexus. On the other, this work points out the fact that collecting household level data with the purpose of assessing the existence and the magnitude of the electrification malaria nexus would help to better understand the nature and magnitude of this link.

Electrification is considered a *sine-qua-non* condition needed to foster the economic development of the country and to improve citizens’ lives [1]. At the household level, electricity brings a number of benefits ranging from time savings when cooking to greater security in and around the house, from extended study time for children to access to mass-media, from extended hours for businesses to better hygienic conditions in the dwellings [2]. While the benefits stemming from electricity access are acknowledged in advance, the analysis of the complete spectrum of impacts has to take into account a number of potential negative aspects as well, with the possible increase of malaria occurrence being one of those.

The electricity-malaria nexus has not been exhaustively investigated, not at the theoretically nor at the empirical level even if few available studies try to disentangle the potential mechanisms underlying this nexus. On one hand, artificial light is a powerful insect attractant and both entomologists and
epidemiologists have used light traps to capture insects [3]. Furthermore, the use of electricity can potentially alter household’s members lifestyles; as an example, artificial light available at night can increase outdoor activities –i.e. friends gathering, sports and business activities- and hence exposure to malaria vectors. At the same time, access to electricity can also increase access to mass media and to anti-malaria and prevention campaigns, which create awareness among households. Furthermore, electricity used for cooking purposes replaces biomass and reduces indoor smoke, resulting in substantially improved indoor air quality. However, smoke is an insect repellant and improved air quality can increase the density of malaria vectors.

The effects electricity may have in terms of malaria occurrence is not only a theoretical matter but also an empirical exercise; availability of household level data with records of malaria occurrence and of energy source used becomes a key factor for measuring the link.

In light of the existing literature available, the electrification-malaria nexus can be modeled according to formula (1):

\[MI = f(\text{vector density, exposure}) \]

which indicates that malaria incidence (MI) relates to the amount of malaria vectors in a given area –vector density- and to the exposure channel -indicating the time household members spend in places where malaria vectors are present [4].

There are several studies showing that mosquitoes are attracted to light suggesting that indoor use of lights after sunset is likely to increase the density of malaria vectors (vector density channel).

The exposure channel refers to the fact that electrification may alter people’s life; for what concerns the impacts electricity use may have on malaria related matters, it has to be noted that electricity allows household members to spend time outside the house after the sunset when malaria vectors are more active.

In light of what it has been previously argued, it is important to stress that the purpose of this work is to point out the existence of a potential electricity-malaria nexus and not to discourage electrification project.
The nexus could be better measured using ad-hoc malaria-electricity related household level surveys which are not available to date.

References

Ph.D. Luca Tasciotti
Erasmus University of Rotterdam, International Institute of Social Studies
Kortenarkade 12, The Hague
The Netherlands
tasciotti@iss.nl